期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Identification and fine mapping of qSW2 for leaf slow wilting in soybean
1
作者 Shengyou Li Changling Wang +5 位作者 chunjuan yan Xugang Sun Lijun Zhang Yongqiang Cao Wenbin Wang Shuhong Song 《The Crop Journal》 SCIE CSCD 2024年第1期244-251,共8页
Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improv... Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources. 展开更多
关键词 Drought GWAS Linkage mapping Slow wilting Soybean(Glycine max)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部