Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c...Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μphase,σphase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO_(3) film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure,mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs.展开更多
Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%S...Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%Si ribbons were characteristic of the {100} fiber-type, which became weakened during primary recrystallization in various atmospheres. At the stage of secondary recrystallization, the {100} texture formed in Ar and the {110} texture in hydrogen, while there occurred a texture transformation from the {100} type to the {110} type in vacuum with the increase of annealing temperature. For Fe-6.5%Si sheets prepared by Si deposition in cold-rolled Fe-3%Si matrix sheets, their textures were dominated by the η-fiber (<001>//RD) with the maximum density at the {120}<001> orientations. After homogenization annealing, the η-fiber could evolve into the {130}<001> type or become more concentrated on the {120}<001> orientations, depending on the cold rolling modes of Fe-3%Si matrix sheets.展开更多
1.Introduction With the upgrading of major equipment,the mechanical prop-erty requirements for structural materials are increasingly high.The maraging steel or maraging stainless steel has long repre-sented the highes...1.Introduction With the upgrading of major equipment,the mechanical prop-erty requirements for structural materials are increasingly high.The maraging steel or maraging stainless steel has long repre-sented the highest strength alloy to be developed as reported in recent researches[1-8].The tensile strength of this kind of alloy is usually around 2.0 GPa.The yield strength of a maraging steel re-cently fabricated by laser powder bed fusion can reach as high as about 2.4 GPa,but it is unfortunate that the elongation is merely about 1%[9].So it seems that 2.0 GPa yield strength is an upper limitation for this kind of alloy.To break through this limitation,it is of significance to establish a new composition design strat-egy.For instance,recent work[10]reported a medium Mn steel doped with Al and V elements,which exhibits an ultra-high yield strength of 2.21 GPa with 15%uniform elongation after thermo-mechanical processing.In another aspect,the design using multi-ple principal elements and additional elements to form a high en-tropy alloy(HEA)should be a very promising pathway.展开更多
We have investigated the phase stability,magnetic properties,and martensitic transformation thermodynamics/kinetics of the Ni_(24-x)Mn_(18+x+y)Sn_(6-y)(x,y=0,1,2)system by combining the first-principles calculations a...We have investigated the phase stability,magnetic properties,and martensitic transformation thermodynamics/kinetics of the Ni_(24-x)Mn_(18+x+y)Sn_(6-y)(x,y=0,1,2)system by combining the first-principles calculations and experiments.The calculation results show that the optimized lattice parameters are consistent with the experimental data.Respectively,we obtain the relation equation for the austenite formation energy(E_(form-A))and Mn content(X_(Mn)):E_(form-A)=507.358X_(Mn)-274.126,as well as for the six-layer modulated(6M)martensite formation energy(E_(form-6M))and Ni content(X_(Ni)):E_(form-6M)=-728.484X_(Ni)+264.374.The ternary phase diagram of the total magnetic moment was established.The excess Mn will reduce the total magnetic moment of 6M(Mag6M)and non-modulated(NM)(MagNM)martensites,with the following equations relating the total magnetic moment and Mn content:Mag_(6M)=-15.905X_(Mn)+7.902and Mag_(NM)=-14.781X_(Mn)+7.411,while the effect on austenite is complex.The variation of total magnetic moment is mainly dominated by the Mn atomic magnetic moment.The 3d electrons of Mn_(Sn)(Mn at Sn sublattice)play an important role in magnetic properties from the perspective of the electronic density of states.Based on the thermodynamics of martensitic transformation,the alloys will likely undergo austenite?6M?NM transformation sequence.Combining the thermodynamic and kinetic results,the martensitic transformation temperature decreases with x increasing and increases with y increasing.These results are expected to provide reference for predicting the phase stability and magnetic properties of NiMn-Sn alloys.展开更多
Finite-temperature ductility-brittleness and electronic structures of Al_(3)Sc,Al_(2)Sc and AlSc are studied comparatively by first-principles calculations and ab initio molecular dynamics.Results show that Al_(3)Sc a...Finite-temperature ductility-brittleness and electronic structures of Al_(3)Sc,Al_(2)Sc and AlSc are studied comparatively by first-principles calculations and ab initio molecular dynamics.Results show that Al_(3)Sc and Al_(2)Sc are brittle at both ground state and finite temperatures,while AlSc possesses a significantly superior ductility.At ground state,AlSc is ductile from Pugh's and Poisson's criteria,while it is brittle in Pettifor's model.The ductility of all Al_(3)Sc,Al_(2)Sc and AISc improves greatly with the elevated temperature.Especially,the Cauchy pressure of AlSc undergoes a transition from negative to positive.At T>600 K,AlSc is unequivocally classified as ductile from all criteria considered.In all compounds,the Al-Al bond originated from s-p and p-p orbital hybridizations,and the Al-Sc bond dominated by p-d covalent hybridization,are the first and second strongest chemical bonds,respectively.To explain the difference in mechanical properties,the mean bond strength(MBS)is introduced in this work.The weaker Al-Al bond in AlSc,leading to a smaller MBS,could be the origin of the softer elastic stiffness and superior intrinsic ductility.The longer length of the Al-Al bond in AlSc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.The longer length of the Al-Al bond in AISc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.展开更多
The effects of Co and Fe co-doping Ni-Mn-In alloy on the phase stability,lattice parameters,mag-netic properties,and electronic structures are systematically investigated by using the first-principles calculations.Res...The effects of Co and Fe co-doping Ni-Mn-In alloy on the phase stability,lattice parameters,mag-netic properties,and electronic structures are systematically investigated by using the first-principles calculations.Results indicate that Fe atoms replace the excess Mn2 atoms by direct and indirect coex-istence(Fe→Mn 2 and Fe→In→Mn2);Co substitutes the Ni atoms by direct substitution(Co→Ni)for the Ni-Mn-In alloy.The austenites all exhibit the ferromagnetic(FM)state for the studied composi-tions.The NM martensites are in the ferrimagnetic(FIM-1)state for the Ni_(2)Mn_(1.5)In_(0.5),Ni_(2)Mn_(1.25)In_(0.5)Fe 0.25,Ni_(1.75)Mn_(1.5)In_(0.5)Co_(0.25),and Ni_(1.75)Mn_(1.25)In_(0.5)Co_(0.25)Fe 0.25 alloys,while the other compositions are in the FM state.The phase stability of austenite and martensite decreases with increasing Co and Fe co-doping.A magnetic-structural coupling transition occurs at x<0.25 and y<0.25.The Ni_(1.91)Mn_(1.5)In_(0.5)Co_(0.08)and Ni_(1.91)Mn_(1.42)In_(0.5)Co_(0.08)Fe_(0.08)alloys exhibit an A→6M→NM transformation,accompanied by a magnetic transition.When Co and Fe are co-doped,the hybridization strength between Co and Fe is greater than that between Co/Fe and Mn.The enhancement of magnetocaloric and elastocaloric effects is favored by larger magnetization difference(△M)and lattice volume change(△V/V_(0)).Based on the calculated phase stability,magneto-structure coupling,△V/V 0 and c/a ratio,one can predict that the Ni_(2)-x Mn_(1.5)-y In_(0.5)Co x Fe y alloy with Co content 0≤x≤0.25 and Fe content 0≤y≤0.05 is predicted to have good magneto-controlled functional behavior.展开更多
The phase stability,magnetic properties,martensitic transformation,and electronic properties of the Ni_(2−x)Mn_(1+x+y)Sn_(1−y) system with excess Mn have been systematically investigated by the first-principles calcul...The phase stability,magnetic properties,martensitic transformation,and electronic properties of the Ni_(2−x)Mn_(1+x+y)Sn_(1−y) system with excess Mn have been systematically investigated by the first-principles calculations.Results indicate that the excess Mn atoms will directly occupy the sublattices of Ni(MnNi)or Sn(MnSn).The formation energy(Ef)of the austenite has a relationship with the Mn content:Ef=135.27(1+x+y)−293.01,that is,the phase stability of the austenite decreases gradually with the increase in Mn content.According to the results of the formation energy of austenite,there is an antiparallel arrangement of the magnetic moment between the excess and normal Mn atoms in the Ni_(2−x)Mn_(1+x+y)Sn_(1−y)(x=0 or y=0)system,while the magnetic moment direction of the normal Mn atoms arranges antiparallel to that of MnNi atoms and parallel to that of MnSn atoms in the Ni_(2−x)Mn_(1+x+y)Sn_(1−y)(x,y≠0)system.The martensitic transformation occurs in some Ni_(2−x)Mn_(1+x+y)Sn_(1−y)(x,y≠0)alloys with large magnetic moments of ferrimagnetic austenite.Besides,the valence electrons tend to distribute around the Ni or MnNi atoms and mainly bond with the normal Mn atoms.The results of this work can lay a theoretical foundation for further development of the Ni_(2−x)Mn_(1+x+y)Sn_(1−y) system as the potential ferromagnetic shape memory alloys.展开更多
A large adiabatic temperature change(△T_(ad))is a prerequisite for the application of elastocaloric refriger-ation.Theoretically,a large volume change ratio(△V/V_(0))during martensitic transformation is favorable to...A large adiabatic temperature change(△T_(ad))is a prerequisite for the application of elastocaloric refriger-ation.Theoretically,a large volume change ratio(△V/V_(0))during martensitic transformation is favorable to enhance△T_(ad).However,the design or prediction of△V/V_(0)in experiments is a complex task because the structure of martensite changes simultaneously when the lattice parameter of austenite is tuned by mod-ifying chemical composition.So far,the solid strategy to tailor△V/V_(0)is still urgently desirable.In this work,a first-principles-based method was proposed to estimate△V/V_(0)for Ni-Mn-based alloys.With this method,the substitution of Ga for In is found to be an effective method to increase the value of△V/V_(0)for Ni-Mn-In alloys.Combined with the strategies of reducing the negative contribution of magnetic en-tropy change(via the substitution of Cu for Mn)and introducing strong crystallographic texture(through directional solidification),an outstanding elastocaloric prototype alloy of Ni_(50)(Mn_(28.5)Cu_(4.5))(In_(14)Ga_(3))was fabricated experimentally.At room temperature,a huge△T_(ad)of-19 K and a large specific adiabatic temperature change of 67.8 K/GPa are obtained.The proposed first-principle-assisted framework opens up the possibility of efficiently tailoring△V/V_(0)to promote the design of advanced elastocaloric refrigerants.展开更多
The compressive yielding phenomenon of titanium alloys is not as focused and sufficiently ascertain as the tensile yielding phenomenon.In the present work,the peculiar compressive yielding behavior and the different d...The compressive yielding phenomenon of titanium alloys is not as focused and sufficiently ascertain as the tensile yielding phenomenon.In the present work,the peculiar compressive yielding behavior and the different dynamic responses of three different initial microstructures(singleβ,clavateβand lamellarβ)were investigated in an attractive metastableβtitanium alloy Ti-5553 using electron microscopes/crystallographic calculation/crystal plastic finite element simulation.Results reveal that the distinct compressive yielding behavior,steep peaks of sudden drop in the initial stage(very small true strain 0.03)of stress loading have appeared in the compression stress-strain curves except for the lamellarβinitial microstructure.Dislocation slip is the essential mechanism of the initial yielding behavior.Interlaced multiple-slip bands formed in the singleβinitial microstructure during the warm deformation process.A small quantity of single slip bands was observed in the deformed clavateβinitial microstructure.The abundant varied nano/ultrafineβsprecipitates were nucleated dynamically and dispersedly in all the three deformed initial microstructures.The multiple-slip bands formation and substantial nanoscaleβsresult in the highest peak of flow stress for singleβinitial microstructure.The compressive slip bands are formed early in the elastic–plastic deformation stage.As the increasing strain,the sample showed a significant compressive bulge,or eventually forming a strong adiabatic shear band or crack.These results are expected to provide a reference for the study of deformation behavior and mechanical properties of metastableβtitanium alloys.展开更多
The Ni43.75Mn37.5In12.5Co6.25 alloy was obtained by using the spark plasma sintering(SPS)technique.The martensitic transformation,magnetic and mechanical properties of the SPS alloy were investigated.Key findings demo...The Ni43.75Mn37.5In12.5Co6.25 alloy was obtained by using the spark plasma sintering(SPS)technique.The martensitic transformation,magnetic and mechanical properties of the SPS alloy were investigated.Key findings demonstrate that the martensitic transformation temperature of this alloy is about 10 K lower than that of the as-cast one.Both SPS and as-cast alloys show a 7 layered modulated martensite(7M)at room temperature.The compressive fracture strength and strain of the SPS alloy increase by 176.92%and 33.33%compared with the as-cast alloy,achieving 1440 MPa and 14%,respectively.The maximum magnetic entropy change Smis 17.1 J kg^(-1)K^(-1)for the SPS alloy at the magnetic field of 5 T.展开更多
In this work,the effects of Co doping on the magnetostructural coupling transformation of Ni_(50-x)Co_(x)Mn_(50-y)Ti_(y)(x=0-15,y=12.5-15)Heusler alloys were systematically investigated through the first-princi-ples c...In this work,the effects of Co doping on the magnetostructural coupling transformation of Ni_(50-x)Co_(x)Mn_(50-y)Ti_(y)(x=0-15,y=12.5-15)Heusler alloys were systematically investigated through the first-princi-ples calculations and experimental verification.The cal-culation result indicates that the doped Co atoms prefer to occupy the Ni sublattice.The Co atoms tend to flock together in terms of the lowest energy principle.Since the formation energy of the austenite is higher than that of the martensite,the alloys will undergo martensitic transfor-mation for the Ni_(50-x)Co_(x)Mn_(37.5)Ti_(12.5)alloys(x=0-12.5).The magnetostructural coupling point of Ni_(50-x)Co_(x)Mn_(37.5)Ti_(12.5)alloys is predicted in the vicinity of x=11-12.Based on the computational composition Ni_(37.5)Co_(12.5)Mn_(37.5)Ti_(12.5),the Ni_(36)Co_(14)Mn_(36)Ti_(14)alloy with magnetostructural coupling near room temperature was experimentally developed by simultaneously increasing the Ti and Co contents.The largest magnetization change(ΔM)and magnetic entropy changes(ΔS_(m))obtained under magnetic field of 5 T for the martensitic transformation in the Ni_(36)Co_(14)Mn_(36)Ti_(14) alloy are about 87.6 A·m^(2)·kg^(-1)and 21 J·kg^(-1)·K^(-1),respectively.The fracture strength and strain for non-textured polycrystalline Ni_(36)Co_(14)Mn_(36)Ti_(14)alloy reach 953 MPa and 12.3%,respectively.The results show that the alloy not only possesses a large magne-tocaloric effect but also has excellent mechanical proper-ties.In addition,the 6 M modulated martensite is evidenced in the Ni-Co-Mn-Ti alloys via transmission electron microscopy technique.展开更多
In this paper, a viable way to fabricate Mg alloy sound ribbons with ultra-fine-grained microstructure was presented. The hot-rolled and annealed Mg-0.4Zn (at%) alloy exhibited excellent rollability to form sound ri...In this paper, a viable way to fabricate Mg alloy sound ribbons with ultra-fine-grained microstructure was presented. The hot-rolled and annealed Mg-0.4Zn (at%) alloy exhibited excellent rollability to form sound ribbons with submicrometer grains when subjected to one-pass cold rolling process. The more balanced multi-mode dislocation slips originated from the significant decrease of critical resolved shear stress for non-basal slip with the addition of solute Zn and the favorable crystallographic orientation were suggested to be responsible for the excellent cold rollability. The formation of ultra-fine-grained microstructure was attributed to low-temperature dynamic recrystallization occurring during the cold rolling process with large strain.展开更多
Brittleness is a bottleneck hindering the applications of fruitful functional properties of Ni–Mn-based multiferroic alloys.Recently,experimental studies on B alloying shed new light on this issue.However,the knowled...Brittleness is a bottleneck hindering the applications of fruitful functional properties of Ni–Mn-based multiferroic alloys.Recently,experimental studies on B alloying shed new light on this issue.However,the knowledge related to B alloying is limited until now.More importantly,the mechanism of the improved ductility,which is intrinsically related to the chemical bond that is difficult to reveal by routine experiments,is still unclear.In this context,by first-principles calculations,the impact and the correlated mechanism of B alloying were systemically studied by investigating four alloying systems,i.e.,(Ni_(2-x)B_(x))MnGa,Ni_(2)(Mn_(1-x)B_(x))Ga,Ni_(2)Mn(Ga_(1-x)B_(x))and(Ni_(2)MnGa)_(1-x)B_(x).Results show that B prefers the direct occupation manner when it replaces Ni,Mn and Ga.For interstitial doping,B tends to locate at octahedral rather than tetrahedral interstice.Calculations show that the replacement of B for Ga can effectively improve(reduce)the inherent ductility(inherent strength)due to the weaker covalent strength of Ni(Mn)–B compared with Ni(Mn)–Ga.In contrast,B staying at octahedral interstice will lead to the formation of new chemical bonds between Ni(Mn)and B,bringing about a significantly improved strength and a greatly reduced ductility.Upon the substitutions for Ni and Mn,they affect both the inherent ductility and strength insignificantly.For phase transition,the replacement of B for Ga tends to destabilize the austenite,which can be understood in the picture of the band Jahn–Teller effect.Besides,the substitution for Ga would not lead to an obvious reduction of magnetization.展开更多
The effects of site occupation on the phase stability,martensitic transformation,and the magnetic and electronic properties of a full series of Ni-Mn-In alloys are theoretically studied by using the ab initio calculat...The effects of site occupation on the phase stability,martensitic transformation,and the magnetic and electronic properties of a full series of Ni-Mn-In alloys are theoretically studied by using the ab initio calculations.Results indicate that the excess atoms of the rich component directly take the sublattices of the deficient components of the Ni2Mn_(1+x)In_(1-x),Ni2-xMn_(1+x)In,and Ni_(2+x)Mn_(1-x)In alloys.Nevertheless,the mixed and indirect site occupations may coexist in the Ni_(2+x)Mn In_(1-x)system.The relevant magnetic configurations of the austenite for the four alloy systems have also been determined.The results show that,except for the austenite in the Ni2-xMn_(1+x)In alloys,which tend to be ferrimagnetic,the other alloys all present ferromagnetic austenite.Thus,the site occupation and associated magnetic states are the crucial influencing factors of the phase stability,martensitic transformation,and the total magnetic moment.The electronic structure of the austenite phase also shows that the covalent bonding plays an important role in the phase stability.The key finding of this work is both Ni2Mn_(1+x)In_(1-x)and Ni_(2+x)Mn In_(1-x)alloys serve as the potential shape memory alloys.展开更多
The martensitic transformation,kinetics,elastic and magnetic properties of the Ni2-xMn1.5In0.5Cox(x=0-0.33)ferromagnetic shape memory alloys were investigated experimentally and theoretically by first-principles calcu...The martensitic transformation,kinetics,elastic and magnetic properties of the Ni2-xMn1.5In0.5Cox(x=0-0.33)ferromagnetic shape memory alloys were investigated experimentally and theoretically by first-principles calculations.First-principles calculations show that Co directly occupies the site of Ni sublattice,and Co atoms prefer to distribute evenly in the structure.The optimized lattice constants are consistent with the experimental results.The martensitic transformation paths are as follows:PA↔FA↔6MFIM↔NMFIM when 0≤x<0.25;PA↔FA↔6MFM↔NMFIM with 0.25≤x<0.3 and PA↔FA↔NMFM with 0.3≤x≤0.33 for Ni2-xMn1.5In0.5Cox(x=0-0.33)alloys.The fundamental reasons for the decrease of TM with increasing Co content are explained from the aspects of first-principles calculations and martensitic transformation kinetics.The component interval of the magnetostructural coupling is determined as 0≤x≤0.25 by first-principles calculations.Furthermore,the origin of the demagnetization effect during martensitic transformation is attributed to the shortening of the nearest neighboring distances for Ni-Ni(Co)and Mn-Mn.Combining the theoretical calculations with experimental results,it is verified that the TM of the Co6 alloy is near room temperature and its magnetization differenceM is 94.6 emu/g.Therefore,magnetic materials with high performance can be obtained,which may be useful for new magnetic applications.展开更多
Epitaxial Ni–Mn–Ga thin films have promising application potential in micro-electro-mechanical sensing and actuation systems. To date, large abrupt magnetization changes have been observed in some epitaxial Ni–Mn–...Epitaxial Ni–Mn–Ga thin films have promising application potential in micro-electro-mechanical sensing and actuation systems. To date, large abrupt magnetization changes have been observed in some epitaxial Ni–Mn–Ga thin films, but their origin-either from magnetically induced martensite variant reorientation(MIR) or magnetic domain evolution-has been discussed controversially. In the present work, we investigated the evolutions of the magnetic domain and microstructure of a typical epitaxial Ni–Mn–Ga thin film through wide-field magneto-optical Kerr-microscopy. It is demonstrated that the abrupt magnetization changes in the hysteresis loops should be attributed to the magnetic domain evolution instead of the MIR.展开更多
Brittleness is a critical issue hindering the potential application of the X_2YZ-type full Heusler alloys in several fields of state-of-the-art technologies.To realize optimization of brittleness or design a ductile H...Brittleness is a critical issue hindering the potential application of the X_2YZ-type full Heusler alloys in several fields of state-of-the-art technologies.To realize optimization of brittleness or design a ductile Heuser alloy,it is greatly urgent to identify the key materials factors deciding brittleness and establish an empirical rule to effectively evaluate ductility.For this purpose,by using a machine learning and human analysis cooperation approach,the brittleness of the X_2YZ-type Heusler alloys was systematically studied.Results showed that the ductility is majorly decided by 6 key materials factors in the studied alloys.Using these 6 factors,a machine learning model to predict the Pugh's ratio k was constructed.Further analyses showed that the crystal structure of the X component could be the most critical factor deciding the ductility.The X component has the face-centered cubic(FCC)structure for most of the alloys with superior ductility.To effectively estimate ductility and guide materials design,an empirical formula of k=mEWF_(m+n)G_(m)+k_(0)was established based on the known information of electron work function(EWF)and shear modulus(G)of the X,Y,and Z elements where the subscript m represents the weight-average value.The coefficients of m(negative)and n(positive)were confirmed to have opposite signs,which can be explained based on the relations between the ductility and the deformation/fracture resistance.This work is expected to deepen the understanding in ductility and promote the design of advanced ductile Heusler alloys.展开更多
The all-d-metal Ni-Mn-Ti Heusler alloy has giant elastocaloric eff ect and excellent mechanical properties,which is diff erent from the conventional Ni-Mn-based Heusler alloys.In this work,the preferred site occupatio...The all-d-metal Ni-Mn-Ti Heusler alloy has giant elastocaloric eff ect and excellent mechanical properties,which is diff erent from the conventional Ni-Mn-based Heusler alloys.In this work,the preferred site occupation,phase stability,martensitic transformation,magnetic properties,and electronic structure of the B-doped Ni_(2)Mn_(1.5)Ti_(0.5)alloys are systematically investigated by the fi rst-principles calculations.The results show that B atoms preferentially occupy the octahedral interstitial.The doped B atoms tend to exist in the(Ni_(2)Mn_(1.5)Ti_(0.5))_(1-x)B_(x)(x=0.03,0.06,0.09)alloy in the form of aggregation distribution,and the martensitic transformation temperature decreases with the increase in the B content.For octahedral interstitial doping,the toughness and plasticity of the(Ni_(2)Mn_(1.5)Ti_(0.5))_(1-x)B_(x) alloys decrease,but the strength and rigidity are greatly enhanced.This is because a small part of the d-d hybridization in ternary Ni-Mn-Ti alloy is replaced by the p-d hybridization in Ni-Mn-Ti-B alloy.展开更多
The composition dependence of the crystal structure and magnetism of the 6 M martensite for the Cu-doped Ni_(43.75)Mn_(37.5)In_(12.5)Co_(6.25) alloy at different site occupations(Cu substitution for Ni, Mn, In, and Co...The composition dependence of the crystal structure and magnetism of the 6 M martensite for the Cu-doped Ni_(43.75)Mn_(37.5)In_(12.5)Co_(6.25) alloy at different site occupations(Cu substitution for Ni, Mn, In, and Co, respectively) is investigated in detail with the first-principles calculations. Results show that the austenite(A) phase exhibits a ferromagnetic(FM) state in all occupation manners, the 6 M martensite possesses an FM state except for the case of Cu substitution at the normal Mn(Mn1) site, and the non-modulated(NM) martensite displays a ferrimagnetic(FIM) state apart from the Cu substitution at the Ni, Mn1, or In sites. The Cu atom destabilizes the A, 6 M, and NM phases regardless of the occupation manner. The one-step martensitic transformation from the A to NM phase occurs in the case of Cu substituting for Mn1, excess Mn(Mn2), or Co;for Cu substituting Ni, a martensitic transformation including 6 M martensite happens, i.e., A → 6 M → NM;however, the martensitic transformation disappears when Cu replaces In site. From the equilibrium lattice constants, it can be speculated that the substitution of Cu for Ni can effectively reduce the thermal hysteresis( ΔT_(Hys)). The magnetic properties are found to be greatly reduced by the substitution of the non-magnetic element Cu for the ferromagnetic Mn atom, whereas the effect is fewer in the remaining cases. It is predicted that the alloy has more favorable properties when Cu replaces Ni. The present results can lay a theoretical foundation for further development of multielement magnetic shape memory alloys.展开更多
基金financially supported by the National Key R&D Program of China (No.2021YFA1200203)the National Natural Science Foundation of China (Nos.51922026 and 51975111)+1 种基金the Fundamental Research Funds for the Central Universities (No.N2202015,N2002005,and N2105001)the 111 Project of China (No.BP0719037 and B20029)。
文摘Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μphase,σphase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO_(3) film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure,mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs.
基金This work was supported by the National Natural Science Foundation of China under Grant No.50130010, Pok Ying-Tung Education Foundation under Grant No. 71045 and the AFCRST under PRA MX 97-04.
文摘Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%Si ribbons were characteristic of the {100} fiber-type, which became weakened during primary recrystallization in various atmospheres. At the stage of secondary recrystallization, the {100} texture formed in Ar and the {110} texture in hydrogen, while there occurred a texture transformation from the {100} type to the {110} type in vacuum with the increase of annealing temperature. For Fe-6.5%Si sheets prepared by Si deposition in cold-rolled Fe-3%Si matrix sheets, their textures were dominated by the η-fiber (<001>//RD) with the maximum density at the {120}<001> orientations. After homogenization annealing, the η-fiber could evolve into the {130}<001> type or become more concentrated on the {120}<001> orientations, depending on the cold rolling modes of Fe-3%Si matrix sheets.
基金National Natural Science Foundation of China(No.51371121).
文摘1.Introduction With the upgrading of major equipment,the mechanical prop-erty requirements for structural materials are increasingly high.The maraging steel or maraging stainless steel has long repre-sented the highest strength alloy to be developed as reported in recent researches[1-8].The tensile strength of this kind of alloy is usually around 2.0 GPa.The yield strength of a maraging steel re-cently fabricated by laser powder bed fusion can reach as high as about 2.4 GPa,but it is unfortunate that the elongation is merely about 1%[9].So it seems that 2.0 GPa yield strength is an upper limitation for this kind of alloy.To break through this limitation,it is of significance to establish a new composition design strat-egy.For instance,recent work[10]reported a medium Mn steel doped with Al and V elements,which exhibits an ultra-high yield strength of 2.21 GPa with 15%uniform elongation after thermo-mechanical processing.In another aspect,the design using multi-ple principal elements and additional elements to form a high en-tropy alloy(HEA)should be a very promising pathway.
基金financially supported by the National Natural Science Foundation of China(No.51771044)the Natural Science Foundation of Hebei Province(No.E2019501061)+5 种基金the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei(No.22567627H)the Fundamental Research Funds for the Central Universities(No.N2223025)2023 Hebei Provincial doctoral candidate Innovation Ability training funding project(CXZZBS2023165)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(No.BP0719037)the support of the Shanxi Supercomputing Center of China,the calculations for this work were performed on TianHe-2supported by the China Scholarship Council(CSC)。
文摘We have investigated the phase stability,magnetic properties,and martensitic transformation thermodynamics/kinetics of the Ni_(24-x)Mn_(18+x+y)Sn_(6-y)(x,y=0,1,2)system by combining the first-principles calculations and experiments.The calculation results show that the optimized lattice parameters are consistent with the experimental data.Respectively,we obtain the relation equation for the austenite formation energy(E_(form-A))and Mn content(X_(Mn)):E_(form-A)=507.358X_(Mn)-274.126,as well as for the six-layer modulated(6M)martensite formation energy(E_(form-6M))and Ni content(X_(Ni)):E_(form-6M)=-728.484X_(Ni)+264.374.The ternary phase diagram of the total magnetic moment was established.The excess Mn will reduce the total magnetic moment of 6M(Mag6M)and non-modulated(NM)(MagNM)martensites,with the following equations relating the total magnetic moment and Mn content:Mag_(6M)=-15.905X_(Mn)+7.902and Mag_(NM)=-14.781X_(Mn)+7.411,while the effect on austenite is complex.The variation of total magnetic moment is mainly dominated by the Mn atomic magnetic moment.The 3d electrons of Mn_(Sn)(Mn at Sn sublattice)play an important role in magnetic properties from the perspective of the electronic density of states.Based on the thermodynamics of martensitic transformation,the alloys will likely undergo austenite?6M?NM transformation sequence.Combining the thermodynamic and kinetic results,the martensitic transformation temperature decreases with x increasing and increases with y increasing.These results are expected to provide reference for predicting the phase stability and magnetic properties of NiMn-Sn alloys.
基金financially supported by the National Key R&D Program of China(No.2022YFB3504401)。
文摘Finite-temperature ductility-brittleness and electronic structures of Al_(3)Sc,Al_(2)Sc and AlSc are studied comparatively by first-principles calculations and ab initio molecular dynamics.Results show that Al_(3)Sc and Al_(2)Sc are brittle at both ground state and finite temperatures,while AlSc possesses a significantly superior ductility.At ground state,AlSc is ductile from Pugh's and Poisson's criteria,while it is brittle in Pettifor's model.The ductility of all Al_(3)Sc,Al_(2)Sc and AISc improves greatly with the elevated temperature.Especially,the Cauchy pressure of AlSc undergoes a transition from negative to positive.At T>600 K,AlSc is unequivocally classified as ductile from all criteria considered.In all compounds,the Al-Al bond originated from s-p and p-p orbital hybridizations,and the Al-Sc bond dominated by p-d covalent hybridization,are the first and second strongest chemical bonds,respectively.To explain the difference in mechanical properties,the mean bond strength(MBS)is introduced in this work.The weaker Al-Al bond in AlSc,leading to a smaller MBS,could be the origin of the softer elastic stiffness and superior intrinsic ductility.The longer length of the Al-Al bond in AlSc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.The longer length of the Al-Al bond in AISc is responsible for its weaker bond strength.Furthermore,the enhanced metallicity of the Al-Al bond in AlSc would also contribute to its exceptional ductility.
基金supported by the National Natural Science Foundation of China(No.51771044)Natural Science Foun-dation of Hebei Province(No.E2019501061)+2 种基金the Fundamental Research Funds for the Central Universities(No.N2023027)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)the LiaoNing Revitalization Talents Program(No.XLYC1802023).
文摘The effects of Co and Fe co-doping Ni-Mn-In alloy on the phase stability,lattice parameters,mag-netic properties,and electronic structures are systematically investigated by using the first-principles calculations.Results indicate that Fe atoms replace the excess Mn2 atoms by direct and indirect coex-istence(Fe→Mn 2 and Fe→In→Mn2);Co substitutes the Ni atoms by direct substitution(Co→Ni)for the Ni-Mn-In alloy.The austenites all exhibit the ferromagnetic(FM)state for the studied composi-tions.The NM martensites are in the ferrimagnetic(FIM-1)state for the Ni_(2)Mn_(1.5)In_(0.5),Ni_(2)Mn_(1.25)In_(0.5)Fe 0.25,Ni_(1.75)Mn_(1.5)In_(0.5)Co_(0.25),and Ni_(1.75)Mn_(1.25)In_(0.5)Co_(0.25)Fe 0.25 alloys,while the other compositions are in the FM state.The phase stability of austenite and martensite decreases with increasing Co and Fe co-doping.A magnetic-structural coupling transition occurs at x<0.25 and y<0.25.The Ni_(1.91)Mn_(1.5)In_(0.5)Co_(0.08)and Ni_(1.91)Mn_(1.42)In_(0.5)Co_(0.08)Fe_(0.08)alloys exhibit an A→6M→NM transformation,accompanied by a magnetic transition.When Co and Fe are co-doped,the hybridization strength between Co and Fe is greater than that between Co/Fe and Mn.The enhancement of magnetocaloric and elastocaloric effects is favored by larger magnetization difference(△M)and lattice volume change(△V/V_(0)).Based on the calculated phase stability,magneto-structure coupling,△V/V 0 and c/a ratio,one can predict that the Ni_(2)-x Mn_(1.5)-y In_(0.5)Co x Fe y alloy with Co content 0≤x≤0.25 and Fe content 0≤y≤0.05 is predicted to have good magneto-controlled functional behavior.
基金financially supported by the National Natural Science Foundation of China(No.51771044)the Natural Science Foundation of Hebei Province(No.E2019501061)+2 种基金the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei(No.22567627H)the Fundamental Research Funds for the Central Universities(No.N2223025)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)。
文摘The phase stability,magnetic properties,martensitic transformation,and electronic properties of the Ni_(2−x)Mn_(1+x+y)Sn_(1−y) system with excess Mn have been systematically investigated by the first-principles calculations.Results indicate that the excess Mn atoms will directly occupy the sublattices of Ni(MnNi)or Sn(MnSn).The formation energy(Ef)of the austenite has a relationship with the Mn content:Ef=135.27(1+x+y)−293.01,that is,the phase stability of the austenite decreases gradually with the increase in Mn content.According to the results of the formation energy of austenite,there is an antiparallel arrangement of the magnetic moment between the excess and normal Mn atoms in the Ni_(2−x)Mn_(1+x+y)Sn_(1−y)(x=0 or y=0)system,while the magnetic moment direction of the normal Mn atoms arranges antiparallel to that of MnNi atoms and parallel to that of MnSn atoms in the Ni_(2−x)Mn_(1+x+y)Sn_(1−y)(x,y≠0)system.The martensitic transformation occurs in some Ni_(2−x)Mn_(1+x+y)Sn_(1−y)(x,y≠0)alloys with large magnetic moments of ferrimagnetic austenite.Besides,the valence electrons tend to distribute around the Ni or MnNi atoms and mainly bond with the normal Mn atoms.The results of this work can lay a theoretical foundation for further development of the Ni_(2−x)Mn_(1+x+y)Sn_(1−y) system as the potential ferromagnetic shape memory alloys.
基金supported by the National Natural Science Foundation of China(Nos.51922026,51975111)the Fundamental Research Funds for the Central Universities(Nos.N2202015,N2230002,N2002021,N2105001)the 111 Project of China(Nos.BP0719037,B20029).
文摘A large adiabatic temperature change(△T_(ad))is a prerequisite for the application of elastocaloric refriger-ation.Theoretically,a large volume change ratio(△V/V_(0))during martensitic transformation is favorable to enhance△T_(ad).However,the design or prediction of△V/V_(0)in experiments is a complex task because the structure of martensite changes simultaneously when the lattice parameter of austenite is tuned by mod-ifying chemical composition.So far,the solid strategy to tailor△V/V_(0)is still urgently desirable.In this work,a first-principles-based method was proposed to estimate△V/V_(0)for Ni-Mn-based alloys.With this method,the substitution of Ga for In is found to be an effective method to increase the value of△V/V_(0)for Ni-Mn-In alloys.Combined with the strategies of reducing the negative contribution of magnetic en-tropy change(via the substitution of Cu for Mn)and introducing strong crystallographic texture(through directional solidification),an outstanding elastocaloric prototype alloy of Ni_(50)(Mn_(28.5)Cu_(4.5))(In_(14)Ga_(3))was fabricated experimentally.At room temperature,a huge△T_(ad)of-19 K and a large specific adiabatic temperature change of 67.8 K/GPa are obtained.The proposed first-principle-assisted framework opens up the possibility of efficiently tailoring△V/V_(0)to promote the design of advanced elastocaloric refrigerants.
基金supported by National Natural Science Foundation of China(51801156)Major State Research Development Program of China(2016YFB0701305)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2018JQ5035)the Fundamental Research Funds for the Central Universities(G2017KY0310).
文摘The compressive yielding phenomenon of titanium alloys is not as focused and sufficiently ascertain as the tensile yielding phenomenon.In the present work,the peculiar compressive yielding behavior and the different dynamic responses of three different initial microstructures(singleβ,clavateβand lamellarβ)were investigated in an attractive metastableβtitanium alloy Ti-5553 using electron microscopes/crystallographic calculation/crystal plastic finite element simulation.Results reveal that the distinct compressive yielding behavior,steep peaks of sudden drop in the initial stage(very small true strain 0.03)of stress loading have appeared in the compression stress-strain curves except for the lamellarβinitial microstructure.Dislocation slip is the essential mechanism of the initial yielding behavior.Interlaced multiple-slip bands formed in the singleβinitial microstructure during the warm deformation process.A small quantity of single slip bands was observed in the deformed clavateβinitial microstructure.The abundant varied nano/ultrafineβsprecipitates were nucleated dynamically and dispersedly in all the three deformed initial microstructures.The multiple-slip bands formation and substantial nanoscaleβsresult in the highest peak of flow stress for singleβinitial microstructure.The compressive slip bands are formed early in the elastic–plastic deformation stage.As the increasing strain,the sample showed a significant compressive bulge,or eventually forming a strong adiabatic shear band or crack.These results are expected to provide a reference for the study of deformation behavior and mechanical properties of metastableβtitanium alloys.
基金the National Natural Science Foundation of China(No.51771044)the Natural Science Foundation of Hebei Province(No.E2019501061)+2 种基金the Fundamental Research Funds for the Central Universities(No.N2023027)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)the Liao Ning Revitalization Talents Program(No.XLYC1802023)。
文摘The Ni43.75Mn37.5In12.5Co6.25 alloy was obtained by using the spark plasma sintering(SPS)technique.The martensitic transformation,magnetic and mechanical properties of the SPS alloy were investigated.Key findings demonstrate that the martensitic transformation temperature of this alloy is about 10 K lower than that of the as-cast one.Both SPS and as-cast alloys show a 7 layered modulated martensite(7M)at room temperature.The compressive fracture strength and strain of the SPS alloy increase by 176.92%and 33.33%compared with the as-cast alloy,achieving 1440 MPa and 14%,respectively.The maximum magnetic entropy change Smis 17.1 J kg^(-1)K^(-1)for the SPS alloy at the magnetic field of 5 T.
基金financially supported by the National Natural Science Foundation of China (No.51771044)the Natural Science Foundation of Hebei Province (No.E2019501061)+2 种基金the Fundamental Research Funds for the Central Universities (No. N2023027)Program of Introducing Talents of Discipline Innovation to Universities 2.0 (No.BP0719037)LiaoNing Revitalization Talents Program (No.XLYC1802023)
文摘In this work,the effects of Co doping on the magnetostructural coupling transformation of Ni_(50-x)Co_(x)Mn_(50-y)Ti_(y)(x=0-15,y=12.5-15)Heusler alloys were systematically investigated through the first-princi-ples calculations and experimental verification.The cal-culation result indicates that the doped Co atoms prefer to occupy the Ni sublattice.The Co atoms tend to flock together in terms of the lowest energy principle.Since the formation energy of the austenite is higher than that of the martensite,the alloys will undergo martensitic transfor-mation for the Ni_(50-x)Co_(x)Mn_(37.5)Ti_(12.5)alloys(x=0-12.5).The magnetostructural coupling point of Ni_(50-x)Co_(x)Mn_(37.5)Ti_(12.5)alloys is predicted in the vicinity of x=11-12.Based on the computational composition Ni_(37.5)Co_(12.5)Mn_(37.5)Ti_(12.5),the Ni_(36)Co_(14)Mn_(36)Ti_(14)alloy with magnetostructural coupling near room temperature was experimentally developed by simultaneously increasing the Ti and Co contents.The largest magnetization change(ΔM)and magnetic entropy changes(ΔS_(m))obtained under magnetic field of 5 T for the martensitic transformation in the Ni_(36)Co_(14)Mn_(36)Ti_(14) alloy are about 87.6 A·m^(2)·kg^(-1)and 21 J·kg^(-1)·K^(-1),respectively.The fracture strength and strain for non-textured polycrystalline Ni_(36)Co_(14)Mn_(36)Ti_(14)alloy reach 953 MPa and 12.3%,respectively.The results show that the alloy not only possesses a large magne-tocaloric effect but also has excellent mechanical proper-ties.In addition,the 6 M modulated martensite is evidenced in the Ni-Co-Mn-Ti alloys via transmission electron microscopy technique.
基金supported by the National Natural Science Foundation of China (51171120)
文摘In this paper, a viable way to fabricate Mg alloy sound ribbons with ultra-fine-grained microstructure was presented. The hot-rolled and annealed Mg-0.4Zn (at%) alloy exhibited excellent rollability to form sound ribbons with submicrometer grains when subjected to one-pass cold rolling process. The more balanced multi-mode dislocation slips originated from the significant decrease of critical resolved shear stress for non-basal slip with the addition of solute Zn and the favorable crystallographic orientation were suggested to be responsible for the excellent cold rollability. The formation of ultra-fine-grained microstructure was attributed to low-temperature dynamic recrystallization occurring during the cold rolling process with large strain.
基金the National Natural Science Foundation of China(Grant No.51801020,51922026,51771044)the Fundamental Research Funds for the Central Universities(Grant No.N2002005,N2002021)+2 种基金the Liao Ning Revitalization Talents Program(Grant No.XLYC1802023)the Ph.D.Starting Foundation of Liaoning Province(Grant No.20180540115)Programme of Introducing Talents of Discipline Innovation to Universities(the 111 Project of China,No.BP0719037,B20029)。
文摘Brittleness is a bottleneck hindering the applications of fruitful functional properties of Ni–Mn-based multiferroic alloys.Recently,experimental studies on B alloying shed new light on this issue.However,the knowledge related to B alloying is limited until now.More importantly,the mechanism of the improved ductility,which is intrinsically related to the chemical bond that is difficult to reveal by routine experiments,is still unclear.In this context,by first-principles calculations,the impact and the correlated mechanism of B alloying were systemically studied by investigating four alloying systems,i.e.,(Ni_(2-x)B_(x))MnGa,Ni_(2)(Mn_(1-x)B_(x))Ga,Ni_(2)Mn(Ga_(1-x)B_(x))and(Ni_(2)MnGa)_(1-x)B_(x).Results show that B prefers the direct occupation manner when it replaces Ni,Mn and Ga.For interstitial doping,B tends to locate at octahedral rather than tetrahedral interstice.Calculations show that the replacement of B for Ga can effectively improve(reduce)the inherent ductility(inherent strength)due to the weaker covalent strength of Ni(Mn)–B compared with Ni(Mn)–Ga.In contrast,B staying at octahedral interstice will lead to the formation of new chemical bonds between Ni(Mn)and B,bringing about a significantly improved strength and a greatly reduced ductility.Upon the substitutions for Ni and Mn,they affect both the inherent ductility and strength insignificantly.For phase transition,the replacement of B for Ga tends to destabilize the austenite,which can be understood in the picture of the band Jahn–Teller effect.Besides,the substitution for Ga would not lead to an obvious reduction of magnetization.
基金financially supported by the National Natural Science Foundation of China(No.51771044)the Natural Science Foundation of Hebei Province(No.E2019501061)+2 种基金the Fundamental Research Funds for the Central Universities(No.N2023027)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)the Liao Ning Revitalization Talents Program(No.XLYC1802023)。
文摘The effects of site occupation on the phase stability,martensitic transformation,and the magnetic and electronic properties of a full series of Ni-Mn-In alloys are theoretically studied by using the ab initio calculations.Results indicate that the excess atoms of the rich component directly take the sublattices of the deficient components of the Ni2Mn_(1+x)In_(1-x),Ni2-xMn_(1+x)In,and Ni_(2+x)Mn_(1-x)In alloys.Nevertheless,the mixed and indirect site occupations may coexist in the Ni_(2+x)Mn In_(1-x)system.The relevant magnetic configurations of the austenite for the four alloy systems have also been determined.The results show that,except for the austenite in the Ni2-xMn_(1+x)In alloys,which tend to be ferrimagnetic,the other alloys all present ferromagnetic austenite.Thus,the site occupation and associated magnetic states are the crucial influencing factors of the phase stability,martensitic transformation,and the total magnetic moment.The electronic structure of the austenite phase also shows that the covalent bonding plays an important role in the phase stability.The key finding of this work is both Ni2Mn_(1+x)In_(1-x)and Ni_(2+x)Mn In_(1-x)alloys serve as the potential shape memory alloys.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.51771044,51431005 and 51801020)the Natural Science Foundation of Hebei Province(No.E2019501061 and E2019203364)+1 种基金the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)the LiaoNing Revitalization Talents Program(Grant No.XLYC1802023).
文摘The martensitic transformation,kinetics,elastic and magnetic properties of the Ni2-xMn1.5In0.5Cox(x=0-0.33)ferromagnetic shape memory alloys were investigated experimentally and theoretically by first-principles calculations.First-principles calculations show that Co directly occupies the site of Ni sublattice,and Co atoms prefer to distribute evenly in the structure.The optimized lattice constants are consistent with the experimental results.The martensitic transformation paths are as follows:PA↔FA↔6MFIM↔NMFIM when 0≤x<0.25;PA↔FA↔6MFM↔NMFIM with 0.25≤x<0.3 and PA↔FA↔NMFM with 0.3≤x≤0.33 for Ni2-xMn1.5In0.5Cox(x=0-0.33)alloys.The fundamental reasons for the decrease of TM with increasing Co content are explained from the aspects of first-principles calculations and martensitic transformation kinetics.The component interval of the magnetostructural coupling is determined as 0≤x≤0.25 by first-principles calculations.Furthermore,the origin of the demagnetization effect during martensitic transformation is attributed to the shortening of the nearest neighboring distances for Ni-Ni(Co)and Mn-Mn.Combining the theoretical calculations with experimental results,it is verified that the TM of the Co6 alloy is near room temperature and its magnetization differenceM is 94.6 emu/g.Therefore,magnetic materials with high performance can be obtained,which may be useful for new magnetic applications.
基金supported by the National Natural Science Foundation of China (Grants Nos. 52071071)the Liaoning Revitalization Talents Program (Grant No. XLYC1802023)+1 种基金the Fundamental Research Funds for the Central Universities of China (Grant Nos. N2102006)the Program of Introducing Talents of Discipline Innovation to Universities 2.0 (the 111 Project of China 2.0, No. BP0719037)。
文摘Epitaxial Ni–Mn–Ga thin films have promising application potential in micro-electro-mechanical sensing and actuation systems. To date, large abrupt magnetization changes have been observed in some epitaxial Ni–Mn–Ga thin films, but their origin-either from magnetically induced martensite variant reorientation(MIR) or magnetic domain evolution-has been discussed controversially. In the present work, we investigated the evolutions of the magnetic domain and microstructure of a typical epitaxial Ni–Mn–Ga thin film through wide-field magneto-optical Kerr-microscopy. It is demonstrated that the abrupt magnetization changes in the hysteresis loops should be attributed to the magnetic domain evolution instead of the MIR.
基金financially supported by the National Natural Science Foundation of China(Nos.51801020,51922026,51975111)the Fundamental Research Funds for the Central Universities(Nos.N2002005,N2105001)the 111 Project of China(Nos.BP0719037,B20029)。
文摘Brittleness is a critical issue hindering the potential application of the X_2YZ-type full Heusler alloys in several fields of state-of-the-art technologies.To realize optimization of brittleness or design a ductile Heuser alloy,it is greatly urgent to identify the key materials factors deciding brittleness and establish an empirical rule to effectively evaluate ductility.For this purpose,by using a machine learning and human analysis cooperation approach,the brittleness of the X_2YZ-type Heusler alloys was systematically studied.Results showed that the ductility is majorly decided by 6 key materials factors in the studied alloys.Using these 6 factors,a machine learning model to predict the Pugh's ratio k was constructed.Further analyses showed that the crystal structure of the X component could be the most critical factor deciding the ductility.The X component has the face-centered cubic(FCC)structure for most of the alloys with superior ductility.To effectively estimate ductility and guide materials design,an empirical formula of k=mEWF_(m+n)G_(m)+k_(0)was established based on the known information of electron work function(EWF)and shear modulus(G)of the X,Y,and Z elements where the subscript m represents the weight-average value.The coefficients of m(negative)and n(positive)were confirmed to have opposite signs,which can be explained based on the relations between the ductility and the deformation/fracture resistance.This work is expected to deepen the understanding in ductility and promote the design of advanced ductile Heusler alloys.
基金financially supported by the National Natural Science Foundation of China(Grant No.51771044)the Natural Science Foundation of Hebei Province(No.E2019501061)+2 种基金the Fundamental Research Funds for the Central Universities(No.N2023027)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)the LiaoNing Revitalization Talents Program(Grant No.XLYC1802023)。
文摘The all-d-metal Ni-Mn-Ti Heusler alloy has giant elastocaloric eff ect and excellent mechanical properties,which is diff erent from the conventional Ni-Mn-based Heusler alloys.In this work,the preferred site occupation,phase stability,martensitic transformation,magnetic properties,and electronic structure of the B-doped Ni_(2)Mn_(1.5)Ti_(0.5)alloys are systematically investigated by the fi rst-principles calculations.The results show that B atoms preferentially occupy the octahedral interstitial.The doped B atoms tend to exist in the(Ni_(2)Mn_(1.5)Ti_(0.5))_(1-x)B_(x)(x=0.03,0.06,0.09)alloy in the form of aggregation distribution,and the martensitic transformation temperature decreases with the increase in the B content.For octahedral interstitial doping,the toughness and plasticity of the(Ni_(2)Mn_(1.5)Ti_(0.5))_(1-x)B_(x) alloys decrease,but the strength and rigidity are greatly enhanced.This is because a small part of the d-d hybridization in ternary Ni-Mn-Ti alloy is replaced by the p-d hybridization in Ni-Mn-Ti-B alloy.
基金financially supported by the National Natural Science Foundation of China(No.51771044)the Natural Science Foundation of Hebei Province(No.E2019501061)+3 种基金the Fundamental Research Funds for the Central Universities(No.N2023027)the Program of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037)the Liaoning Revitalization Talents Program(Grant No.XLYC1802023)。
文摘The composition dependence of the crystal structure and magnetism of the 6 M martensite for the Cu-doped Ni_(43.75)Mn_(37.5)In_(12.5)Co_(6.25) alloy at different site occupations(Cu substitution for Ni, Mn, In, and Co, respectively) is investigated in detail with the first-principles calculations. Results show that the austenite(A) phase exhibits a ferromagnetic(FM) state in all occupation manners, the 6 M martensite possesses an FM state except for the case of Cu substitution at the normal Mn(Mn1) site, and the non-modulated(NM) martensite displays a ferrimagnetic(FIM) state apart from the Cu substitution at the Ni, Mn1, or In sites. The Cu atom destabilizes the A, 6 M, and NM phases regardless of the occupation manner. The one-step martensitic transformation from the A to NM phase occurs in the case of Cu substituting for Mn1, excess Mn(Mn2), or Co;for Cu substituting Ni, a martensitic transformation including 6 M martensite happens, i.e., A → 6 M → NM;however, the martensitic transformation disappears when Cu replaces In site. From the equilibrium lattice constants, it can be speculated that the substitution of Cu for Ni can effectively reduce the thermal hysteresis( ΔT_(Hys)). The magnetic properties are found to be greatly reduced by the substitution of the non-magnetic element Cu for the ferromagnetic Mn atom, whereas the effect is fewer in the remaining cases. It is predicted that the alloy has more favorable properties when Cu replaces Ni. The present results can lay a theoretical foundation for further development of multielement magnetic shape memory alloys.