A self-sensing test method for the temperature of piezoelectric stack,based on the high correlation between the static capacitance and the stack temperature,is proposed in order to construct a self-sufficient methodol...A self-sensing test method for the temperature of piezoelectric stack,based on the high correlation between the static capacitance and the stack temperature,is proposed in order to construct a self-sufficient methodology of temperature measurement. Firstly,a theoretical model of static capacitance of the piezoelectric stack under preload was set up,and the influence of preload on the static capacitance was analyzed. Secondly,the correctness of the model was verified by static capacitance test experiments under various preloading conditions. Finally, the temperature measurement experiments at low-temperature stage for two kinds of piezoelectric stacks,namely the lowtemperature-resistant piezoelectric stack and conventional piezoelectric stack, were conducted under various preloading conditions using a polynomial fitting method. The results,which validate the accuracy of the test method,show that the maximum temperature deviations of the two kinds of piezoelectric stack are 3.9 ℃ and 2.8 ℃,respectively,when the preload force is close to the specified value. The test method uses the piezoelectric stack itself as a temperature sensor,which does not require additional equipment for temperature sensing,so that the space and equipment cost could be economized. And the test for static capacitance is concise and convenient,which indicates that in the cooling process,a concise and efficient test of the temperature of the piezoelectric stack could be realized so as to grasp the current temperature change in time.展开更多
基金This work is supported by the NationalNatural Science Foundation of China (No. 11872207);the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_0266)the Fundamental Research Funds for the Central Universities(No.kfjj20180105)
文摘A self-sensing test method for the temperature of piezoelectric stack,based on the high correlation between the static capacitance and the stack temperature,is proposed in order to construct a self-sufficient methodology of temperature measurement. Firstly,a theoretical model of static capacitance of the piezoelectric stack under preload was set up,and the influence of preload on the static capacitance was analyzed. Secondly,the correctness of the model was verified by static capacitance test experiments under various preloading conditions. Finally, the temperature measurement experiments at low-temperature stage for two kinds of piezoelectric stacks,namely the lowtemperature-resistant piezoelectric stack and conventional piezoelectric stack, were conducted under various preloading conditions using a polynomial fitting method. The results,which validate the accuracy of the test method,show that the maximum temperature deviations of the two kinds of piezoelectric stack are 3.9 ℃ and 2.8 ℃,respectively,when the preload force is close to the specified value. The test method uses the piezoelectric stack itself as a temperature sensor,which does not require additional equipment for temperature sensing,so that the space and equipment cost could be economized. And the test for static capacitance is concise and convenient,which indicates that in the cooling process,a concise and efficient test of the temperature of the piezoelectric stack could be realized so as to grasp the current temperature change in time.