In this paper, we propose two hybrid inertial CQ projection algorithms with linesearch process for the split feasibility problem. Based on the hybrid CQ projection algorithm, we firstly add the inertial term into the ...In this paper, we propose two hybrid inertial CQ projection algorithms with linesearch process for the split feasibility problem. Based on the hybrid CQ projection algorithm, we firstly add the inertial term into the iteration to accelerate the convergence of the algorithm, and adopt flexible rules for selecting the stepsize and the shrinking projection region, which makes an optimal stepsize available at each iteration. The shrinking projection region is the intersection of three sets, which are the set C and two hyperplanes. Furthermore, we modify the Armijo-type line-search step in the presented algorithm to get a new algorithm.The algorithms are shown to be convergent under certain mild assumptions. Besides, numerical examples are given to show that the proposed algorithms have better performance than the general CQ algorithm.展开更多
This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to ...This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to improve the convergence. And its convergence is proved un- der some suitable conditions. Numerical results illustrate that the bi-extrapolated subgradient projection algorithm converges more quickly than the existing algorithms.展开更多
In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techn...In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techniques which reduce the oscillation of the corresponding sequence.To prove the convergence in a simply way,we transmit the parallel algorithm in the original space to a sequential one in a newly constructed product space.Thus,the convergence of the parallel algorithm is derived with the help of the sequential one under some suitable conditions.Numerical results show that the new algorithm has better convergence than the existing algorithms.展开更多
In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unco...In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unconstrained GGP problem.A new type of condensation problem is presented,then a particular conjugate path is constructed for the problem,along which we get the approximate solution of the problem by nonmonotonic trust region algorithm,and further prove that the algorithm has global convergence and quadratic convergence properties.展开更多
基金Supported by the National Natural Science Foundation of China(72071130)。
文摘In this paper, we propose two hybrid inertial CQ projection algorithms with linesearch process for the split feasibility problem. Based on the hybrid CQ projection algorithm, we firstly add the inertial term into the iteration to accelerate the convergence of the algorithm, and adopt flexible rules for selecting the stepsize and the shrinking projection region, which makes an optimal stepsize available at each iteration. The shrinking projection region is the intersection of three sets, which are the set C and two hyperplanes. Furthermore, we modify the Armijo-type line-search step in the presented algorithm to get a new algorithm.The algorithms are shown to be convergent under certain mild assumptions. Besides, numerical examples are given to show that the proposed algorithms have better performance than the general CQ algorithm.
基金Supported by Natural Science Foundation of Shanghai(14ZR1429200)National Science Foundation of China(11171221)+4 种基金Shanghai Leading Academic Discipline Project(XTKX2012)Innovation Program of Shanghai Municipal Education Commission(14YZ094)Doctoral Program Foundation of Institutions of Higher Educationof China(20123120110004)Doctoral Starting Projection of the University of Shanghai for Science and Technology(ID-10-303-002)Young Teacher Training Projection Program of Shanghai for Science and Technology
文摘This paper deals with a bi-extrapolated subgradient projection algorithm by intro- ducing two extrapolated factors in the iterative step to solve the multiple-sets split feasibility problem. The strategy is intend to improve the convergence. And its convergence is proved un- der some suitable conditions. Numerical results illustrate that the bi-extrapolated subgradient projection algorithm converges more quickly than the existing algorithms.
基金Supported by the NNSF of china(11171221)SuppoSed by the Shanghai Municipal Committee of Science and Technology(10550500800)
文摘In this paper,we present an extrapolated parallel subgradient projection method with the centering technique for the convex feasibility problem,the algorithm improves the convergence by reason of using centering techniques which reduce the oscillation of the corresponding sequence.To prove the convergence in a simply way,we transmit the parallel algorithm in the original space to a sequential one in a newly constructed product space.Thus,the convergence of the parallel algorithm is derived with the help of the sequential one under some suitable conditions.Numerical results show that the new algorithm has better convergence than the existing algorithms.
基金Supported by the National Science Foundation of China(10671126) Supported by the Shanghai Municipal Government Project(S30501)+3 种基金 Supported by the Innovation Fund Project for Graduate Student of Shanghai(JWCXSL1001) Supported by the Youth Foundation of Henan Polytechnic University(Q20093) Supported by the Applied Mathematics Provinciallevel Key Discipline of Henan Province Supported by Operational Research and Control Theory Key Discipline of Henan Polytechnic University
文摘In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unconstrained GGP problem.A new type of condensation problem is presented,then a particular conjugate path is constructed for the problem,along which we get the approximate solution of the problem by nonmonotonic trust region algorithm,and further prove that the algorithm has global convergence and quadratic convergence properties.