A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the...This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078010 and 52101321)the National Key Research and Development Program of China(Grant No.2022YFC3004300).
文摘This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.