Continuous and stable tracking of the ground maneuvering target is a challenging problem due to the complex terrain and high clutter. A collaborative tracking method of the multisensor network is presented for the gro...Continuous and stable tracking of the ground maneuvering target is a challenging problem due to the complex terrain and high clutter. A collaborative tracking method of the multisensor network is presented for the ground maneuvering target in the presence of the detection blind zone(DBZ). First, the sensor scheduling process is modeled within the partially observable Markov decision process(POMDP) framework. To evaluate the target tracking accuracy of the sensor, the Fisher information is applied to constructing the reward function. The key of the proposed scheduling method is forecasting and early decisionmaking. Thus, an approximate method based on unscented sampling is presented to estimate the target state and the multi-step scheduling reward over the prediction time horizon. Moreover, the problem is converted into a nonlinear optimization problem, and a fast search algorithm is given to solve the sensor scheduling scheme quickly. Simulation results demonstrate the proposed nonmyopic scheduling method(Non-MSM) has a better target tracking accuracy compared with traditional methods.展开更多
Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the ...Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the Gabor filter is proposed to estimate the direction navigability of the geomagnetic field. First,the DSMFs are extracted based on the Gabor filter’s responses.Second, in the view of pattern recognition, the classification accuracy in fault diagnosis is introduced as the objective function of the hybrid particle swarm optimization(HPSO) algorithm to optimize the Gabor filter’s parameters. With its guidance, the DSMFs are extracted. Finally, a direction navigability analysis model is established with the support vector machine(SVM), and the performances of the models under different objective functions are discussed. Simulation results show the parameters of the Gabor filter have a significant influence on the DSMFs, which, in turn, affects the analysis results of direction navigability. Moreover, the risk of misclassification can be effectively reduced by using the analysis model with optimal Gabor filter parameters. The proposed method is not restricted in geomagnetic navigation, and it also can be used in other fields such as terrain matching and gravity navigation.展开更多
基金supported by the National Defense Pre-Research Foundation of China(0102015012600A2203)。
文摘Continuous and stable tracking of the ground maneuvering target is a challenging problem due to the complex terrain and high clutter. A collaborative tracking method of the multisensor network is presented for the ground maneuvering target in the presence of the detection blind zone(DBZ). First, the sensor scheduling process is modeled within the partially observable Markov decision process(POMDP) framework. To evaluate the target tracking accuracy of the sensor, the Fisher information is applied to constructing the reward function. The key of the proposed scheduling method is forecasting and early decisionmaking. Thus, an approximate method based on unscented sampling is presented to estimate the target state and the multi-step scheduling reward over the prediction time horizon. Moreover, the problem is converted into a nonlinear optimization problem, and a fast search algorithm is given to solve the sensor scheduling scheme quickly. Simulation results demonstrate the proposed nonmyopic scheduling method(Non-MSM) has a better target tracking accuracy compared with traditional methods.
基金supported by the Key Project of Military Research on Weapons and Equipment(2014551)
文摘Direction navigability analysis is a supplement to the navigability analysis theory, in which extraction of the direction suitable-matching features(DSMFs) determines the evaluation performance. A method based on the Gabor filter is proposed to estimate the direction navigability of the geomagnetic field. First,the DSMFs are extracted based on the Gabor filter’s responses.Second, in the view of pattern recognition, the classification accuracy in fault diagnosis is introduced as the objective function of the hybrid particle swarm optimization(HPSO) algorithm to optimize the Gabor filter’s parameters. With its guidance, the DSMFs are extracted. Finally, a direction navigability analysis model is established with the support vector machine(SVM), and the performances of the models under different objective functions are discussed. Simulation results show the parameters of the Gabor filter have a significant influence on the DSMFs, which, in turn, affects the analysis results of direction navigability. Moreover, the risk of misclassification can be effectively reduced by using the analysis model with optimal Gabor filter parameters. The proposed method is not restricted in geomagnetic navigation, and it also can be used in other fields such as terrain matching and gravity navigation.