Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all character- ized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are tw...Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all character- ized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.展开更多
Neuroinflammation is a common element involved in the pathophysiology of neurodegenerative diseases.We recently reported that repeated alpha-7 nicotinic acetylcholine receptor(α7 n ACh R) activations by a potent ag...Neuroinflammation is a common element involved in the pathophysiology of neurodegenerative diseases.We recently reported that repeated alpha-7 nicotinic acetylcholine receptor(α7 n ACh R) activations by a potent agonist such as PHA 543613 in quinolinic acid-injured rats exhibited protective effects on neurons.To further investigate the underlying mechanism,we established rat models of early-stage Huntington's disease by injection of quinolinic acid into the right striatum and then intraperitoneally injected 12 mg/kg PHA 543613 or sterile water,twice a day during 4 days.Western blot assay results showed that the expression of heme oxygenase-1(HO-1),the key component of the cholinergic anti-inflammatory pathway,in the right striatum of rat models of Huntington's disease subjected to intraperitoneal injection of PHA 543613 for 4 days was significantly increased compared to the control rats receiving intraperitoneal injection of sterile water,and that the increase in HO-1 expression was independent of change in α7 n ACh R expression.These findings suggest that HO-1 expression is unrelated to α7 n ACh R density and the increase in HO-1 expression likely contributes to α7 n ACh R activation-related neuroprotective effect in early-stage Huntington's disease.展开更多
文摘Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all character- ized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.
基金supported by the Région Centre-Val de Loire(2014 00094049–AP 2014-850)the European Union’s Seventh Framework Programme(FP7/2007-2013)under grant agreement n°278850(INMiND)
文摘Neuroinflammation is a common element involved in the pathophysiology of neurodegenerative diseases.We recently reported that repeated alpha-7 nicotinic acetylcholine receptor(α7 n ACh R) activations by a potent agonist such as PHA 543613 in quinolinic acid-injured rats exhibited protective effects on neurons.To further investigate the underlying mechanism,we established rat models of early-stage Huntington's disease by injection of quinolinic acid into the right striatum and then intraperitoneally injected 12 mg/kg PHA 543613 or sterile water,twice a day during 4 days.Western blot assay results showed that the expression of heme oxygenase-1(HO-1),the key component of the cholinergic anti-inflammatory pathway,in the right striatum of rat models of Huntington's disease subjected to intraperitoneal injection of PHA 543613 for 4 days was significantly increased compared to the control rats receiving intraperitoneal injection of sterile water,and that the increase in HO-1 expression was independent of change in α7 n ACh R expression.These findings suggest that HO-1 expression is unrelated to α7 n ACh R density and the increase in HO-1 expression likely contributes to α7 n ACh R activation-related neuroprotective effect in early-stage Huntington's disease.