We present a Scanning Electron Microscopy (SEM) technique for the characterisation of biological and non-biological samples at nano-scale level. Scanning Electron Microscopy has been around for a long while especially...We present a Scanning Electron Microscopy (SEM) technique for the characterisation of biological and non-biological samples at nano-scale level. Scanning Electron Microscopy has been around for a long while especially in material science laboratories in developed countries. The SEM has enabled scientist to have a better understanding of microstructure by providing unsurpassed optical magnifications of samples. In this introductory paper, we introduce the techniques of using SEM to capture highly magnified microstructure of a fly found on an African soybean (Glycine max) seed. We are able to estimate the number of lenses in each eye and zoom into features that could describe its life characteristics. Hexagonal lenses are estimated to have sizes ranging from 14 um to 19 um. This paper also presents a finding of a sea coral “pie like structure” on a single grain of sand used for water filtration.展开更多
文摘We present a Scanning Electron Microscopy (SEM) technique for the characterisation of biological and non-biological samples at nano-scale level. Scanning Electron Microscopy has been around for a long while especially in material science laboratories in developed countries. The SEM has enabled scientist to have a better understanding of microstructure by providing unsurpassed optical magnifications of samples. In this introductory paper, we introduce the techniques of using SEM to capture highly magnified microstructure of a fly found on an African soybean (Glycine max) seed. We are able to estimate the number of lenses in each eye and zoom into features that could describe its life characteristics. Hexagonal lenses are estimated to have sizes ranging from 14 um to 19 um. This paper also presents a finding of a sea coral “pie like structure” on a single grain of sand used for water filtration.