Green walls can improve indoor air-quality by reducing concentrations of carbon dioxide(CO2)and other air pollutants.Our study focused on the spider plant,Chlorophytum comosum,and devil’s ivy,Epipremnum aureum,both c...Green walls can improve indoor air-quality by reducing concentrations of carbon dioxide(CO2)and other air pollutants.Our study focused on the spider plant,Chlorophytum comosum,and devil’s ivy,Epipremnum aureum,both common green-wall plants that have been found to be efficient CO2 absorbers.Both species have multiple variants with varying degrees of leaf green-white segmentation.Since pho-tosynthesis depends on the concentration of leaf chlorophylls,we hypothesized that green variants are more efficient carbon absorbers than green-white variants.In addi-tion,we tested the hypothesis that the photosynthetic rate of plants is affected by pot volume,as suggested by previous studies.We used a portable gas exchange system to determine the rate of photosynthesis of the study plants.No evidence was found for better photosynthetic performance in the green vs.green-white variants of each species.In fact,our results suggest the opposite.It was observed that a spider plants assimilated carbon more efficiently when grown in a larger pot volume.In conclusion,our study shows that in terms of carbon assimilation,green-white variants of spider plants are the better choice for indoor green walls.Their efficiency can be improved dramatically by increasing pot volume.展开更多
Aims In plant eco-physiology,less negative(enriched)carbon 13(^(13)C)in the leaves indicates conditions of reducing leaf gas exchange through stomata,e.g.under drought.In addition,^(13)C is expected to be less negativ...Aims In plant eco-physiology,less negative(enriched)carbon 13(^(13)C)in the leaves indicates conditions of reducing leaf gas exchange through stomata,e.g.under drought.In addition,^(13)C is expected to be less negative in non-photosynthetic tissues as compared with leaves.However,these relationships inδ^(13)C from leaves(photosynthetic organs)to branches,stems and roots(non-photosynthetic organs)are rarely tested across multiple closely related tree species,multiple compartments,or in trees growing under extreme heat and drought.Methods We measured leaf-to-root^(13)C in three closely related desert acacia species(Acacia tortilis,A.raddiana and A.pachyceras).We measuredδ^(13)C in leaf tissues from mature trees in southern Israel.In parallel,a 7-year irrigation experiment with 0.5,1.0 or 4.0 L day1 was conducted in an experimental orchard.At the end of the experiment,growth parameters andδ^(13)C were measured in leaves,branches,stems and roots.Important Findings Theδ^(13)C in leaf tissues sampled from mature trees was ca.-27‰,far more depleted than expected from a desert tree growing in one of the Earth's driest and hottest environments.Across acacia species and compartments,δ^(13)C was not enriched at all irrigation levels(-28‰to ca.-27‰),confirming our measurements in the mature trees.Among compartments,leafδ^(13)C was unexpectedly similar to branch and rootδ^(13)C,and surprisingly,even less negative than stemδ^(13)C.The highly depleted leafδ^(13)C suggests that these trees have high stomatai gas exchange,despite growing in extremely dry habitats.The lack ofδ^(13)C enrichment in nonphotosynthetic tissues might be related to the seasonal coupling of growth of leaves and heterotrophic tissues.展开更多
文摘Green walls can improve indoor air-quality by reducing concentrations of carbon dioxide(CO2)and other air pollutants.Our study focused on the spider plant,Chlorophytum comosum,and devil’s ivy,Epipremnum aureum,both common green-wall plants that have been found to be efficient CO2 absorbers.Both species have multiple variants with varying degrees of leaf green-white segmentation.Since pho-tosynthesis depends on the concentration of leaf chlorophylls,we hypothesized that green variants are more efficient carbon absorbers than green-white variants.In addi-tion,we tested the hypothesis that the photosynthetic rate of plants is affected by pot volume,as suggested by previous studies.We used a portable gas exchange system to determine the rate of photosynthesis of the study plants.No evidence was found for better photosynthetic performance in the green vs.green-white variants of each species.In fact,our results suggest the opposite.It was observed that a spider plants assimilated carbon more efficiently when grown in a larger pot volume.In conclusion,our study shows that in terms of carbon assimilation,green-white variants of spider plants are the better choice for indoor green walls.Their efficiency can be improved dramatically by increasing pot volume.
基金funded by the Benoziyo Fund for the Advancement of ScienceMr and Mrs Norman Reiser,together with the Weizmann Center for New Scientists+1 种基金the Edith&Nathan Goldberg Career Development Chair.D.U.was funded by Ariovich scholarship and by the scholarship of the environmental science school of the Hebrew University.G.W.thanks the Arava Drainage Authority and the Israeli Ministry of Science and Technology(MOST)for their continued support.The study used data available through the TRY initiative on plant traits(http://www.try-db.org,data request 8968).The TRY initiative and database is hosted,developed and maintained by J.Kattge and G.Bonisch(Max Planck Institute for Biogeochemistry,Jena,Germany)TRY is currently supported by DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research(iDiv)Halle-Jena-Leipzig.
文摘Aims In plant eco-physiology,less negative(enriched)carbon 13(^(13)C)in the leaves indicates conditions of reducing leaf gas exchange through stomata,e.g.under drought.In addition,^(13)C is expected to be less negative in non-photosynthetic tissues as compared with leaves.However,these relationships inδ^(13)C from leaves(photosynthetic organs)to branches,stems and roots(non-photosynthetic organs)are rarely tested across multiple closely related tree species,multiple compartments,or in trees growing under extreme heat and drought.Methods We measured leaf-to-root^(13)C in three closely related desert acacia species(Acacia tortilis,A.raddiana and A.pachyceras).We measuredδ^(13)C in leaf tissues from mature trees in southern Israel.In parallel,a 7-year irrigation experiment with 0.5,1.0 or 4.0 L day1 was conducted in an experimental orchard.At the end of the experiment,growth parameters andδ^(13)C were measured in leaves,branches,stems and roots.Important Findings Theδ^(13)C in leaf tissues sampled from mature trees was ca.-27‰,far more depleted than expected from a desert tree growing in one of the Earth's driest and hottest environments.Across acacia species and compartments,δ^(13)C was not enriched at all irrigation levels(-28‰to ca.-27‰),confirming our measurements in the mature trees.Among compartments,leafδ^(13)C was unexpectedly similar to branch and rootδ^(13)C,and surprisingly,even less negative than stemδ^(13)C.The highly depleted leafδ^(13)C suggests that these trees have high stomatai gas exchange,despite growing in extremely dry habitats.The lack ofδ^(13)C enrichment in nonphotosynthetic tissues might be related to the seasonal coupling of growth of leaves and heterotrophic tissues.