Environmental unpredictability can influence strategies of maternal investment among eggs within a clutch. Models predict that breeding females should adopt a diversified bet-hedging strategy in unpredictable environm...Environmental unpredictability can influence strategies of maternal investment among eggs within a clutch. Models predict that breeding females should adopt a diversified bet-hedging strategy in unpredictable environments, but empirical field evidence from Asia is scarce. Here we tested this hypothesis by exploring spatial patterns in egg size along an altitudinal gradient in a frog species (Rana kukunoris) inhabiting the Tibetan Plateau. Within-clutch variability in egg size increased as the environment became variable (e.g., lower mean monthly temperature and mean monthly rainfall at higher altitudes), and populations in environments with more unpredictable rainfall produced eggs that were smaller and more variable in size. We provide support for a diversified bet-hedging strategy in high-altitude environments, which experience dynamic weather patterns and therefore are of unpredictable environmental quality. This strategy may be an adaptive response to lower environmental quality and higher unpredictable environmental variance. Such a strategy should increase the likelihood of breeding success and maximize maternal lifetime fitness by producing offspring that are adapted to current environmental conditions. We speculate that in high-altitude environments prone to physical disturbance, breeding females are unable to consistently produce the optimal egg size due to physiological constraints imposed by environmental conditions (e.g., duration of the active season, food availability). Species and populations whose breeding strategies are adapted to cope with uncertain environmental conditions by adjusting offspring size and therefore quality show a remarkable degree of ability to cope with future climatic changes.展开更多
基金funded by the Natural Sciences Foundation for Distinguished Young Scholar of Sichuan (grant number 2016JQ0038)Key Foundation of Sichuan Provincial Department of Education (grant number 18ZA0255)the National Sciences Foundation of China (grant number 31670392)
文摘Environmental unpredictability can influence strategies of maternal investment among eggs within a clutch. Models predict that breeding females should adopt a diversified bet-hedging strategy in unpredictable environments, but empirical field evidence from Asia is scarce. Here we tested this hypothesis by exploring spatial patterns in egg size along an altitudinal gradient in a frog species (Rana kukunoris) inhabiting the Tibetan Plateau. Within-clutch variability in egg size increased as the environment became variable (e.g., lower mean monthly temperature and mean monthly rainfall at higher altitudes), and populations in environments with more unpredictable rainfall produced eggs that were smaller and more variable in size. We provide support for a diversified bet-hedging strategy in high-altitude environments, which experience dynamic weather patterns and therefore are of unpredictable environmental quality. This strategy may be an adaptive response to lower environmental quality and higher unpredictable environmental variance. Such a strategy should increase the likelihood of breeding success and maximize maternal lifetime fitness by producing offspring that are adapted to current environmental conditions. We speculate that in high-altitude environments prone to physical disturbance, breeding females are unable to consistently produce the optimal egg size due to physiological constraints imposed by environmental conditions (e.g., duration of the active season, food availability). Species and populations whose breeding strategies are adapted to cope with uncertain environmental conditions by adjusting offspring size and therefore quality show a remarkable degree of ability to cope with future climatic changes.