Atmospheric carbon dioxide [CO2] has increased dramatically within the current life spans of long-lived trees and old forests. Consider that a 500-year-old tree in the early twenty-first century has spent 70% of its l...Atmospheric carbon dioxide [CO2] has increased dramatically within the current life spans of long-lived trees and old forests. Consider that a 500-year-old tree in the early twenty-first century has spent 70% of its life growing under preindustrial levels of [CO2], which were 30% lower than current levels. Here we address the question of whether old trees have already responded to the rapid rise in [CO2] occurring over the past 150 years. In spite of limited data, aging trees have been shown to possess a substantial capacity for increased net growth after a period of post-maturity growth decline. Observations of renewed growth and physiological function in old trees have, in some instances, coincided with Industrial Age increases in key environmental resources, including [CO2], suggesting the potential for continued growth in old trees as a function of continued global climate change.展开更多
基金Supported by Discovery Project Number DP0879531 of the Australian Research Councila University of Western Sydney International Research Schemes Initiative (IRIS) (71827)+2 种基金the National Science Foundation, Divisionof Integrative Organismal Systems (0517521)sabbatical support from Boston University to NGPfrom the Bushfire Cooperative Research Centre.
文摘Atmospheric carbon dioxide [CO2] has increased dramatically within the current life spans of long-lived trees and old forests. Consider that a 500-year-old tree in the early twenty-first century has spent 70% of its life growing under preindustrial levels of [CO2], which were 30% lower than current levels. Here we address the question of whether old trees have already responded to the rapid rise in [CO2] occurring over the past 150 years. In spite of limited data, aging trees have been shown to possess a substantial capacity for increased net growth after a period of post-maturity growth decline. Observations of renewed growth and physiological function in old trees have, in some instances, coincided with Industrial Age increases in key environmental resources, including [CO2], suggesting the potential for continued growth in old trees as a function of continued global climate change.