In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can opera...In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can operate stably and efficiently under various complex terrain conditions. Initially, a new wheel-legged structure was designed by drawing inspiration from the motion principles of grasshopper hind legs and combining them with pneumatic-hydraulic linkage mechanisms. Kinematic analysis was conducted on this wheel-legged configuration by utilizing the D-H parameter method, which revealed that its end effector has a travel range of 0-450 mm in the X-direction, 0-840 mm in the Y-direction, and 0-770 mm in the Z-direction, thereby providing the structural foundation for features such as independent four-wheel steering, adjustable wheel track, automatic vehicle body elevation adjustment, and maintaining a level body posture on different slopes. Subsequently, theoretical analysis and structural parameter calculations were completed to design each subsystem of the unmanned chassis. Further, kinematic analysis of the wheel-legged unmanned chassis was carried out using RecurDyn, which substantiated the feasibility of achieving functions like slope leveling and autonomous obstacle negotiation. An omnidirectional leveling control system was also established, taking into account factors such as pitch angle, roll angle, virtual leg deployment, and center of gravity height. Joint simulations using Adams and Matlab were performed on the wheel-legged unmanned chassis, comparing its leveling performance with that of a PID control system. The results indicated that the maximum absolute value of leveling error was 1.08° for the pitch angle and 1.19° for the roll angle, while the standard deviations were 0.216 47° for the pitch angle and 0.176 22° for the roll angle, demonstrating that the wheel-legged unmanned chassis surpassed the PID control system in leveling performance, thus validating the correctness and feasibility of its full-directional body posture leveling control in complex environments. Finally, the wheel-legged unmanned chassis was fabricated, assembled, and subjected to in-place leveling and ground clearance adjustment tests. The experimental outcomes showed that the vehicle was capable of achieving in-place leveling with response speed and leveling accuracy meeting practical operational requirements under the action of the posture control system. Moreover, the adjustable ground clearance proved sufficient to meet the demands of actual obstacle crossing scenarios.展开更多
Human respiratory syncytial virus(RSV)is a severe threat to children and a main cause of acute lower respiratory tract infections.Nevertheless,the intra-host evolution and inter-regional diffusion of RSV are little kn...Human respiratory syncytial virus(RSV)is a severe threat to children and a main cause of acute lower respiratory tract infections.Nevertheless,the intra-host evolution and inter-regional diffusion of RSV are little known.In this study,we performed a systematic surveillance in hospitalized children in Hubei during 2020–2021,in which 106 RSV-positive samples were detected both clinically and by metagenomic next generation sequencing(mNGS).RSV-A and RSV-B groups co-circulated during surveillance with RSV-B being predominant.About 46 high-quality genomes were used for further analyses.A total of 163 intra-host nucleotide variation(iSNV)sites distributed in 34 samples were detected,and glycoprotein(G)gene was the most enriched gene for iSNVs,with non-synonymous substitutions more than synonymous substitutions.Evolutionary dynamic analysis showed that the evolutionary rates of G and NS2 genes were higher,and the population size of RSV groups changed over time.We also found evidences of inter-regional diffusion from Europe and Oceania to Hubei for RSV-A and RSV-B,respectively.This study highlighted the intra-host and inter-host evolution of RSV,and provided some evi-dences for understanding the evolution of RSV.展开更多
With the benefits of small turning radius and high trafficability, the articulated steering half-track tractor had been widely utilized in orchard and small spaced farmland. To study the dynamic performance of the art...With the benefits of small turning radius and high trafficability, the articulated steering half-track tractor had been widely utilized in orchard and small spaced farmland. To study the dynamic performance of the articulated steering half-track tractor and provide a model basis for studying the path tracking control, an accurate multi-body dynamic model of the tractor was required. In this study, the crucial parameters in the dynamic model construction of the tractor were investigated. Firstly, the topology model of the components of the half-track tractor was built by RecurDyn, in which the movement subs and driver functions were given. Secondly, considering the difference of dynamic characteristic of the articulated steering tractor with respect to different pavement hardnesses, the soft and hard pavement models were constructed by employing the harmonic superposition method. Finally, the simulations of the half-track tractor under straight-line and swerve had been conducted on the two types of pavements, and the simulation results were compared with the experimental and theoretical results. The results indicated that the average speed error of the dynamic model on hard pavement and farmland soft pavement were 2.7% and 2.1% compared with the real tractor tests. At the same time, the straight-line driving offset errors of the dynamic model on the two pavements were 1.6% and 3.8% for the front wheels and the rear wheels offset errors were 3.9% and 2.4%, respectively. Furthermore, the turning radius error under front wheel steering was 8.2% and the error under articulated steering was 5.3%. It is proved that the established dynamic model had high accuracy, which provides an efficient approach to analyze the dynamic features of the half-track tractor.展开更多
Metalenses are ultrathin optical elements that can focus light using densely arranged subwavelength structures.Due to their minimal form factor,they have been considered promising for imaging applications that require...Metalenses are ultrathin optical elements that can focus light using densely arranged subwavelength structures.Due to their minimal form factor,they have been considered promising for imaging applications that require extreme system size,weight,and power,such as in consumer electronics and remote sensing.However,as a major impediment prohibiting the wide adoption of the metalens technology,the aperture size,and consequently the imaging resolution,of a metalens are often limited by lithography processes that are not scalable.Here,we propose to adopt a synthetic aperture approach to alleviate the issue,and experimentally demonstrate that,assisted by computational reconstruction,a synthetic aperture metalens composed of multiple metalenses with relatively small aperture size can achieve an imaging resolution comparable to a conventional lens with an equivalent large aperture.We validate the concept via an outdoor imaging experiment performed with a synthetic aperture metalens-integrated near-infrared camera using natural sunlight for target illumination.展开更多
To meet the requirements of fast steering at low vehicle speed and slow steering at high vehicle speed,the automatic steering of agricultural chassis must control both the wheel steering angle and the steering angle’...To meet the requirements of fast steering at low vehicle speed and slow steering at high vehicle speed,the automatic steering of agricultural chassis must control both the wheel steering angle and the steering angle’s angular speed.This study applied hydraulic steer-by-wire technology to the automatic steering control of agricultural chassis.First,the transmission mechanism of the designed steering system was optimized.According to the rule of least squares,aiming at the minimum sum of squares of errors between 10 ideal outer wheel angles and real outer wheel angles,the optimal solution of hole spacing on both sides of the steering hydraulic cylinder piston rod was 925 mm.The outer wheel angle error of the optimized steering mechanism throughout the steering stroke was less than 0.15°.Additionally,a hydraulic steer-by-wire system was developed,and the parameters of its critical components were calculated.Then,the compound control strategy of the steering cylinder piston rod displacement and moving speed was formulated for this automatic steering system.The entire control system included a valve control signal calculation model,an initial velocity calculation model,a correction velocity calculation model,and an attenuation velocity calculation model,and the formulae of each model were deduced.Based on the optimized parameters and the developed control strategy,a simulation model was built in AMESim,and simulation results showed that the proposed control strategy could achieve simultaneous controls of piston rod displacement and speed at different vehicle speeds and loads.The horizontal and vertical displacements of the right wheel center were plotted for typical vehicle speeds and steering commands.The results of this study provided a new idea for the application of hydraulic steer-by-wire technology in the automatic steering of agricultural chassis.展开更多
Migratory birds are considered natural reservoirs of avian influenza A viruses(AIVs).To further our viral ecology knowledge and understand the subsequent risk posed by wild birds,we conducted a 4-year surveillance stu...Migratory birds are considered natural reservoirs of avian influenza A viruses(AIVs).To further our viral ecology knowledge and understand the subsequent risk posed by wild birds,we conducted a 4-year surveillance study of AIVs in the bird wintering wetlands of the Yangtze River,China.We collected over8000 samples and isolated 122 AIV strains.Analyses were then carried out with 108 novel sequenced genomes and data were deposited in GISAID and other public databases.The results showed that the Yangtze River wintering wetlands functioned as a mixing ground,where various subtypes of AIVs were detected harboring a high diversity of nucleotide sequences;moreover,a portion of AIV gene segments were persistent inter-seasonally.Phylogenetic incongruence presented complex reassortment events and distinct patterns among various subtypes.In addition,we observed that viral gene segments in wintering wetlands were closely related to known North American isolates,indicating that intercontinental gene flow occurred.Notably,highly pathogenic H5 and low pathogenic H9 viruses,which usually circulate in poultry,were found to have crossed the poultry/wild bird interface,with the viruses introduced to wintering birds.Overall,this study represented the largest AIV surveillance effort of wild birds within the Yangtze River wintering wetlands.Surveillance data highlighted the important role of wintering wild birds in the ecology of AIVs and may enable future early warnings of novel AIV emergence.展开更多
The change detection(CD)of heterogeneous remote sensing images is an important but challenging task.The difficulty is to obtain the change information by directly comparing the different statistical characteristics of...The change detection(CD)of heterogeneous remote sensing images is an important but challenging task.The difficulty is to obtain the change information by directly comparing the different statistical characteristics of the images acquired by different sensors.This paper proposes an unsupervised method for heterogeneous image CD based on an image domain transfer network.First,an attention mechanism is added to the Cycle-generative adversarial networks(Cycle-GANs)to obtain a more consistent feature expression by transferring bi-temporal heterogeneous images to the common domain.The Euclidean distance of the corresponding pixels is calculated in the common domain to form a difference map,and a threshold algorithm is applied to get a rough change map.Finally,the proposed adaptive Discrete Cosine Transform(DCT)algorithm reduces the noise introduced by false detection,and the final change map is obtained.The proposed method is verified on three real heterogeneous CD datasets and compared with the current state-of-the-art methods.The results show that the proposed method is accurate and robust for performing heterogeneous CD tasks.展开更多
基金supported by the Key Laboratory of Modern Agricultural Intelligent Equipment in South China,Ministry of Agriculture and Rural Affairs,China.
文摘In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can operate stably and efficiently under various complex terrain conditions. Initially, a new wheel-legged structure was designed by drawing inspiration from the motion principles of grasshopper hind legs and combining them with pneumatic-hydraulic linkage mechanisms. Kinematic analysis was conducted on this wheel-legged configuration by utilizing the D-H parameter method, which revealed that its end effector has a travel range of 0-450 mm in the X-direction, 0-840 mm in the Y-direction, and 0-770 mm in the Z-direction, thereby providing the structural foundation for features such as independent four-wheel steering, adjustable wheel track, automatic vehicle body elevation adjustment, and maintaining a level body posture on different slopes. Subsequently, theoretical analysis and structural parameter calculations were completed to design each subsystem of the unmanned chassis. Further, kinematic analysis of the wheel-legged unmanned chassis was carried out using RecurDyn, which substantiated the feasibility of achieving functions like slope leveling and autonomous obstacle negotiation. An omnidirectional leveling control system was also established, taking into account factors such as pitch angle, roll angle, virtual leg deployment, and center of gravity height. Joint simulations using Adams and Matlab were performed on the wheel-legged unmanned chassis, comparing its leveling performance with that of a PID control system. The results indicated that the maximum absolute value of leveling error was 1.08° for the pitch angle and 1.19° for the roll angle, while the standard deviations were 0.216 47° for the pitch angle and 0.176 22° for the roll angle, demonstrating that the wheel-legged unmanned chassis surpassed the PID control system in leveling performance, thus validating the correctness and feasibility of its full-directional body posture leveling control in complex environments. Finally, the wheel-legged unmanned chassis was fabricated, assembled, and subjected to in-place leveling and ground clearance adjustment tests. The experimental outcomes showed that the vehicle was capable of achieving in-place leveling with response speed and leveling accuracy meeting practical operational requirements under the action of the posture control system. Moreover, the adjustable ground clearance proved sufficient to meet the demands of actual obstacle crossing scenarios.
基金National Key Research and Development Program of China(2018YFC1603803)National Natural Science Foun-dation of China(31970548)+2 种基金Knowledge Innovation Program of Wuhan-Basi Research(2022020801010519)Health Commission of Hubei Province(WJ 2021M262)Natural Science Fund of Hubei Province(2021CFA012).
文摘Human respiratory syncytial virus(RSV)is a severe threat to children and a main cause of acute lower respiratory tract infections.Nevertheless,the intra-host evolution and inter-regional diffusion of RSV are little known.In this study,we performed a systematic surveillance in hospitalized children in Hubei during 2020–2021,in which 106 RSV-positive samples were detected both clinically and by metagenomic next generation sequencing(mNGS).RSV-A and RSV-B groups co-circulated during surveillance with RSV-B being predominant.About 46 high-quality genomes were used for further analyses.A total of 163 intra-host nucleotide variation(iSNV)sites distributed in 34 samples were detected,and glycoprotein(G)gene was the most enriched gene for iSNVs,with non-synonymous substitutions more than synonymous substitutions.Evolutionary dynamic analysis showed that the evolutionary rates of G and NS2 genes were higher,and the population size of RSV groups changed over time.We also found evidences of inter-regional diffusion from Europe and Oceania to Hubei for RSV-A and RSV-B,respectively.This study highlighted the intra-host and inter-host evolution of RSV,and provided some evi-dences for understanding the evolution of RSV.
基金supported by the National Key R&D Program of China (Grant No.2022YFD2202102).
文摘With the benefits of small turning radius and high trafficability, the articulated steering half-track tractor had been widely utilized in orchard and small spaced farmland. To study the dynamic performance of the articulated steering half-track tractor and provide a model basis for studying the path tracking control, an accurate multi-body dynamic model of the tractor was required. In this study, the crucial parameters in the dynamic model construction of the tractor were investigated. Firstly, the topology model of the components of the half-track tractor was built by RecurDyn, in which the movement subs and driver functions were given. Secondly, considering the difference of dynamic characteristic of the articulated steering tractor with respect to different pavement hardnesses, the soft and hard pavement models were constructed by employing the harmonic superposition method. Finally, the simulations of the half-track tractor under straight-line and swerve had been conducted on the two types of pavements, and the simulation results were compared with the experimental and theoretical results. The results indicated that the average speed error of the dynamic model on hard pavement and farmland soft pavement were 2.7% and 2.1% compared with the real tractor tests. At the same time, the straight-line driving offset errors of the dynamic model on the two pavements were 1.6% and 3.8% for the front wheels and the rear wheels offset errors were 3.9% and 2.4%, respectively. Furthermore, the turning radius error under front wheel steering was 8.2% and the error under articulated steering was 5.3%. It is proved that the established dynamic model had high accuracy, which provides an efficient approach to analyze the dynamic features of the half-track tractor.
基金National Natural Science Foundation of China(61975251)。
文摘Metalenses are ultrathin optical elements that can focus light using densely arranged subwavelength structures.Due to their minimal form factor,they have been considered promising for imaging applications that require extreme system size,weight,and power,such as in consumer electronics and remote sensing.However,as a major impediment prohibiting the wide adoption of the metalens technology,the aperture size,and consequently the imaging resolution,of a metalens are often limited by lithography processes that are not scalable.Here,we propose to adopt a synthetic aperture approach to alleviate the issue,and experimentally demonstrate that,assisted by computational reconstruction,a synthetic aperture metalens composed of multiple metalenses with relatively small aperture size can achieve an imaging resolution comparable to a conventional lens with an equivalent large aperture.We validate the concept via an outdoor imaging experiment performed with a synthetic aperture metalens-integrated near-infrared camera using natural sunlight for target illumination.
基金the State Key Research Program of China(Grant No.2021YFD2000105)the Scientific Research and Agricultural Technology Promotion Project of Guangdong Provincial Department of Agriculture and Rural Affairs(Grant No.2021125).
文摘To meet the requirements of fast steering at low vehicle speed and slow steering at high vehicle speed,the automatic steering of agricultural chassis must control both the wheel steering angle and the steering angle’s angular speed.This study applied hydraulic steer-by-wire technology to the automatic steering control of agricultural chassis.First,the transmission mechanism of the designed steering system was optimized.According to the rule of least squares,aiming at the minimum sum of squares of errors between 10 ideal outer wheel angles and real outer wheel angles,the optimal solution of hole spacing on both sides of the steering hydraulic cylinder piston rod was 925 mm.The outer wheel angle error of the optimized steering mechanism throughout the steering stroke was less than 0.15°.Additionally,a hydraulic steer-by-wire system was developed,and the parameters of its critical components were calculated.Then,the compound control strategy of the steering cylinder piston rod displacement and moving speed was formulated for this automatic steering system.The entire control system included a valve control signal calculation model,an initial velocity calculation model,a correction velocity calculation model,and an attenuation velocity calculation model,and the formulae of each model were deduced.Based on the optimized parameters and the developed control strategy,a simulation model was built in AMESim,and simulation results showed that the proposed control strategy could achieve simultaneous controls of piston rod displacement and speed at different vehicle speeds and loads.The horizontal and vertical displacements of the right wheel center were plotted for typical vehicle speeds and steering commands.The results of this study provided a new idea for the application of hydraulic steer-by-wire technology in the automatic steering of agricultural chassis.
基金supported by the National Natural Science Foundation of China(81961138013,31570026,31970174,31970548,and 32061123001)the National Mega Project on Major Infectious Disease Prevention(2017ZX10103005-005)+1 种基金the Special Project of Ministry of Science and Technology(2013FY113500)the Russian Foundation for Basic Research—National Natural Science Foundation of China Collaboration Fund(19-54-55004)。
文摘Migratory birds are considered natural reservoirs of avian influenza A viruses(AIVs).To further our viral ecology knowledge and understand the subsequent risk posed by wild birds,we conducted a 4-year surveillance study of AIVs in the bird wintering wetlands of the Yangtze River,China.We collected over8000 samples and isolated 122 AIV strains.Analyses were then carried out with 108 novel sequenced genomes and data were deposited in GISAID and other public databases.The results showed that the Yangtze River wintering wetlands functioned as a mixing ground,where various subtypes of AIVs were detected harboring a high diversity of nucleotide sequences;moreover,a portion of AIV gene segments were persistent inter-seasonally.Phylogenetic incongruence presented complex reassortment events and distinct patterns among various subtypes.In addition,we observed that viral gene segments in wintering wetlands were closely related to known North American isolates,indicating that intercontinental gene flow occurred.Notably,highly pathogenic H5 and low pathogenic H9 viruses,which usually circulate in poultry,were found to have crossed the poultry/wild bird interface,with the viruses introduced to wintering birds.Overall,this study represented the largest AIV surveillance effort of wild birds within the Yangtze River wintering wetlands.Surveillance data highlighted the important role of wintering wild birds in the ecology of AIVs and may enable future early warnings of novel AIV emergence.
基金supported by Military Commission Science and Technology Committee Leading Fund of China:[Grant Number 18-163-00-TS-004-080-01].
文摘The change detection(CD)of heterogeneous remote sensing images is an important but challenging task.The difficulty is to obtain the change information by directly comparing the different statistical characteristics of the images acquired by different sensors.This paper proposes an unsupervised method for heterogeneous image CD based on an image domain transfer network.First,an attention mechanism is added to the Cycle-generative adversarial networks(Cycle-GANs)to obtain a more consistent feature expression by transferring bi-temporal heterogeneous images to the common domain.The Euclidean distance of the corresponding pixels is calculated in the common domain to form a difference map,and a threshold algorithm is applied to get a rough change map.Finally,the proposed adaptive Discrete Cosine Transform(DCT)algorithm reduces the noise introduced by false detection,and the final change map is obtained.The proposed method is verified on three real heterogeneous CD datasets and compared with the current state-of-the-art methods.The results show that the proposed method is accurate and robust for performing heterogeneous CD tasks.