期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries 被引量:10
1
作者 dedong jia Kun Zheng +7 位作者 Ming Song Hua Tan Aitang Zhang Lihua Wang Lijun Yue Da Li Chenwei Li Jingquan Liu 《Nano Research》 SCIE EI CAS CSCD 2020年第1期215-224,共10页
Aqueous Zinc-ion batteries(ZIBs),using zinc negative electrode and aqueous electrolyte,have attracted great attention in energy storage field due to the reliable safety and low-cost.A composite material comprised of V... Aqueous Zinc-ion batteries(ZIBs),using zinc negative electrode and aqueous electrolyte,have attracted great attention in energy storage field due to the reliable safety and low-cost.A composite material comprised of VO2·0.2H2O nanocuboids anchored on graphene sheets(VOG)is synthesized through a facile and efficient microwave-assisted solvothermal strategy and is used as aqueous ZIBs cathode material.Owing to the synergistic effects between the high conductivity of graphene sheets and the desirable structural features of VO2·0.2H2O nanocuboids,the VOG electrode has excellent electronic and ionic transport ability,resulting in superior Zn ions storage performance.The Zn/VOG system delivers ultrahigh specific capacity of 423 mAh·g^−1 at 0.25 A·g^−1 and exhibits good cycling stability of up to 1,000 cycles at 8 A·g^−1 with 87%capacity retention.Systematical structural and elemental characterizations confirm that the interlayer space of VO2·0.2H2O nanocuboids can adapt to the reversible Zn ions insertion/extraction.The as-prepared VOG composite is a promising cathode material with remarkable electrochemical performance for low-cost and safe aqueous rechargeable ZIBs. 展开更多
关键词 VO2·0.2H2O nanocuboids graphene sheet aqueous zinc-ion battery ultrahigh capacity electron and ion transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部