Theranostics is a concept that integrated imaging and therapy. As an emerging field, it embraces multiple techniques to arrive at an individualized treatment purpose. Indocyanine green(ICG) is a near infrared dye that...Theranostics is a concept that integrated imaging and therapy. As an emerging field, it embraces multiple techniques to arrive at an individualized treatment purpose. Indocyanine green(ICG) is a near infrared dye that has been approved by Food and Drug Administration(FDA) in USA for the use in indicator-dilution studies in humans. ICG nanoparticles(NPs) have attracted much attention for its potential applications in cancer theranostics. This review focuses on the preparation, application of ICG NPs for in vivo imaging(fluorescent imaging and photoacoustic imaging) and therapeutics(photothermal therapy, photodynamic therapy and photoacoustic therapy), and future directions based on recent developments in these areas. It is hoped that this review might provide new impetus to understand ICG NPs for cancer theranostics.展开更多
Fluorescence probes with aggregation-induced emission(AIE)characteristics are of great importance in biomedical imaging with superior spatial and temporal resolution.However,the lack of toxicity studies and deep tissu...Fluorescence probes with aggregation-induced emission(AIE)characteristics are of great importance in biomedical imaging with superior spatial and temporal resolution.However,the lack of toxicity studies and deep tissue imaging in nonhuman primates hinders their clinical translation.Here,we report the blood chemistry and histological analysis in nonhuman primates treated with AIE probes over tenfold of an intravenous dose of clinically used indocyanine green(ICG)during a study period of 36 days to demonstrate AIE probes are nontoxic.Furthermore,through bright and nontoxic AIE probes and fluorescence imaging in the second window(NIR-II,1,000-1,700 nm),we achieve an unprecedented 1.5-centimeter-deep vascular imaging in nonhuman primates,breaking the current limitation of millimeter-deep NIR-II fluorescence imaging.Our important findings,i.e.,nontoxic features of AIE probes and centimeter-deep NIR-II vascular imaging in nonhuman primates,may facilitate successful translation of AIE probes in clinical trials.展开更多
Targeted therapy of Parkinson’s disease is an important challenge because of the blood–brain barrier limitation.Here,we propose a natural killer cell membrane biomimetic nanocomplex(named BLIPO-CUR)delivered via the...Targeted therapy of Parkinson’s disease is an important challenge because of the blood–brain barrier limitation.Here,we propose a natural killer cell membrane biomimetic nanocomplex(named BLIPO-CUR)delivered via the meningeal lymphatic vessel(MLV)route to further the therapeutic efficacy of Parkinson’s disease.The membrane incorporation enables BLIPO-CUR to target the damaged neurons,thus improving their therapeutic efficacy through clearing reactive oxygen species,suppressing the aggregation ofα-synuclein,and inhibiting the spread of excessα-synuclein species.Compared with the conventional intravenous injection,this MLV administration can enhance the delivered efficiency of curcumin into the brain by~20 folds.The MLV route administration of BLIPO-CUR enhances the treatment efficacy of Parkinson’s disease in mouse models by improving their movement disorders and reversing neuron death.Our findings highlight the great potential of MLV route administration used as targeted delivery of drugs to the brain,holding a great promise for neurodegenerative disease therapy.展开更多
Focused ultrasound(FUS)-induced blood–brain barrier(BBB) opening is crucial for enhancing glioblastoma(GBM) therapies. However, an in vivo imaging approach with a high spatial–temporal resolution to monitor the BBB ...Focused ultrasound(FUS)-induced blood–brain barrier(BBB) opening is crucial for enhancing glioblastoma(GBM) therapies. However, an in vivo imaging approach with a high spatial–temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green(ICG)-dopped microbubbles(MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy(PTT) against GBM. The MBs-ICG show bright fluorescence in the second near-infrared window(NIR-II), ultrasound contrast, and ultrasound-induced size transformation properties. By virtue of complementary contrast properties, MBs-ICG can be successfully applied for cerebral vascular imaging with NIR-II fluorescence resolution of ~168.9 lm and ultrasound penetration depth of ~7 mm. We further demonstrate that MBs-ICG can be combined with FUS for in situ and synchronous visualization of the BBB opening with a NIR-II fluorescence signal-tobackground ratio of 6.2 ± 1.2. Finally, our data show that the MBs-ICG transform into lipid-ICG nanoparticles under FUS irradiation, which then rapidly penetrate the tumor tissues within 10 min and enhance PTT in orthotopic GBM-bearing mice. The multifunctional MBs-ICG approach provides a novel paradigm for monitoring BBB opening and enhancing GBM therapy.展开更多
We report that atomically thin two-dimensional silicon quantum sheets(2D Si QSs),prepared by a scalable approach coupling chemical delithiation and cryo-assisted exfoliation,can serve as a highperformance brain photon...We report that atomically thin two-dimensional silicon quantum sheets(2D Si QSs),prepared by a scalable approach coupling chemical delithiation and cryo-assisted exfoliation,can serve as a highperformance brain photonic nanoagent for orthotopic glioma theranostics.With the lateral size of approximately 14.0 nm and thickness of about 1.6 nm,tiny Si QSs possess high mass extinction coefficient of 27.5 Lg^(-1)cm^(-1)and photothermal conversion efficiency of 47.2%at 808 nm,respectively,concurrently contributing to the best photothermal performance among the reported 2 D mono-elemental materials(Xenes).More importantly,Si QSs with low toxicity maintain the trade-off between stability and degradability,paving the way for practical clinical translation in consideration of both storage and action of nanoagents.In vitro Transwell filter experiment reveals that Si QSs could effectively go across the b End.3 cells monolayer.Upon the intravenous injection of Si QSs,orthotopic brain tumors are effectively inhibited under the precise guidance of photoacoustic imaging,and the survival lifetime of brain tumor-bearing mice is increased by two fold.Atomically thin Si QSs with strong light-harvesting capability are expected to provide an effective and robust 2D photonic nanoplatform for the management of brain diseases.展开更多
基金support for this research from the National Natural Science Foundation of China (Grant No. 81071249, 81171446 and 20905050)Guangdong Innovation Team of Low-cost Healthcare, Science and Technology Key Project of Guangdong (2009A030301010) and Shenzhen (CXB201005250029A, JC201005270326A, JC201005260247A, JC201104220242A)
文摘Theranostics is a concept that integrated imaging and therapy. As an emerging field, it embraces multiple techniques to arrive at an individualized treatment purpose. Indocyanine green(ICG) is a near infrared dye that has been approved by Food and Drug Administration(FDA) in USA for the use in indicator-dilution studies in humans. ICG nanoparticles(NPs) have attracted much attention for its potential applications in cancer theranostics. This review focuses on the preparation, application of ICG NPs for in vivo imaging(fluorescent imaging and photoacoustic imaging) and therapeutics(photothermal therapy, photodynamic therapy and photoacoustic therapy), and future directions based on recent developments in these areas. It is hoped that this review might provide new impetus to understand ICG NPs for cancer theranostics.
基金This work is supported by the National Key Research and Development Program of China(Scientific and Technological Innovation Cooperation of Mainland and Macao)(2017YFE0120000)the Natural Science Foundation of China(91859117,81771906,81901812,81527901,and 31870991)+4 种基金the CAS Key Laboratory of Health Informatics(2011DP173015)the Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08Y191)the Science and Technology Innovation Fund of Shenzhen(JCYJ20170818161918918 and JCYJ20190812163614809)the Shenzhen Key Laboratory of Ultrasound Imaging and Therapy(ZDSYS201802061806314)the China Postdoctoral Science Foundation(2019M653129).
文摘Fluorescence probes with aggregation-induced emission(AIE)characteristics are of great importance in biomedical imaging with superior spatial and temporal resolution.However,the lack of toxicity studies and deep tissue imaging in nonhuman primates hinders their clinical translation.Here,we report the blood chemistry and histological analysis in nonhuman primates treated with AIE probes over tenfold of an intravenous dose of clinically used indocyanine green(ICG)during a study period of 36 days to demonstrate AIE probes are nontoxic.Furthermore,through bright and nontoxic AIE probes and fluorescence imaging in the second window(NIR-II,1,000-1,700 nm),we achieve an unprecedented 1.5-centimeter-deep vascular imaging in nonhuman primates,breaking the current limitation of millimeter-deep NIR-II fluorescence imaging.Our important findings,i.e.,nontoxic features of AIE probes and centimeter-deep NIR-II vascular imaging in nonhuman primates,may facilitate successful translation of AIE probes in clinical trials.
基金the Natural Science Foundation of China(82171958,81771906,91859117,81901812,82027803,81927807,and 92159304)CAS Key Laboratory of Health Informatics(2011DP173015)+4 种基金the Science and Technology Key Project of Shenzhen(JCYJ20190812163614809,CYJ20200109114612308,andJCYJ20210324120011030)Shenzhen Key Laboratory of Ultrasound Imaging and Therapy(ZDSYS201802061806314)Guangdong Basic and Applied Basic Research Fund(2020A1515110011)the University of Macao(MYRG2022-00054-FHS)Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province(2020B1212060051).
文摘Targeted therapy of Parkinson’s disease is an important challenge because of the blood–brain barrier limitation.Here,we propose a natural killer cell membrane biomimetic nanocomplex(named BLIPO-CUR)delivered via the meningeal lymphatic vessel(MLV)route to further the therapeutic efficacy of Parkinson’s disease.The membrane incorporation enables BLIPO-CUR to target the damaged neurons,thus improving their therapeutic efficacy through clearing reactive oxygen species,suppressing the aggregation ofα-synuclein,and inhibiting the spread of excessα-synuclein species.Compared with the conventional intravenous injection,this MLV administration can enhance the delivered efficiency of curcumin into the brain by~20 folds.The MLV route administration of BLIPO-CUR enhances the treatment efficacy of Parkinson’s disease in mouse models by improving their movement disorders and reversing neuron death.Our findings highlight the great potential of MLV route administration used as targeted delivery of drugs to the brain,holding a great promise for neurodegenerative disease therapy.
基金supported by the National Natural Science Foundation of China (92159304, 82171958, 81901812, 81971638, 91859117, 82027803, and 81927807)CAS Key Laboratory of Health Informatics (2011DP173015)+4 种基金the Science and Technology Key Project of Shenzhen(JCYJ20190812163614809, JCYJ20200109114612308, JCYJ2021032 4120011030, JCYJ20190809105207439, JCYJ20220531091408019, and JCYJ20200109114825064)Guangdong Basic and Applied Basic Research Fund (2020A1515110011, 2020A1515010395, and 2022A1515010384)Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province (2020B1212060051)the Key Technology and Equipment R&D Program of Major Science and Technology Infrastructure of Shenzhen (202100102, 202100104)Discipline Construction Project of Guangdong Medical University (4SG21017G)
文摘Focused ultrasound(FUS)-induced blood–brain barrier(BBB) opening is crucial for enhancing glioblastoma(GBM) therapies. However, an in vivo imaging approach with a high spatial–temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green(ICG)-dopped microbubbles(MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy(PTT) against GBM. The MBs-ICG show bright fluorescence in the second near-infrared window(NIR-II), ultrasound contrast, and ultrasound-induced size transformation properties. By virtue of complementary contrast properties, MBs-ICG can be successfully applied for cerebral vascular imaging with NIR-II fluorescence resolution of ~168.9 lm and ultrasound penetration depth of ~7 mm. We further demonstrate that MBs-ICG can be combined with FUS for in situ and synchronous visualization of the BBB opening with a NIR-II fluorescence signal-tobackground ratio of 6.2 ± 1.2. Finally, our data show that the MBs-ICG transform into lipid-ICG nanoparticles under FUS irradiation, which then rapidly penetrate the tumor tissues within 10 min and enhance PTT in orthotopic GBM-bearing mice. The multifunctional MBs-ICG approach provides a novel paradigm for monitoring BBB opening and enhancing GBM therapy.
基金supported by the National Key Research and Development Program of China:Scientific and Technological Innovation Cooperation of Mainland and Macao(2017YFE0120000)the National Natural Science Foundation of China(31800834,81527901,81571745,91859117,81771906,81827807,81901812,and 52071120)+6 种基金the Open Foundation of Shenzhen Bay Laboratory(SZBL2019062801005)the Fundamental Research Funds for the Central Universities(JZ2020HGTB0031 and JZ2018HGPA0273)the Science and Technology Key Project of Shenzhen(JCYJ20160229200902680)the Shenzhen Key Laboratory of Ultrasound Imaging and Therapy(ZDSYS201802061806314)the Shenzhen Double Chain Grant([2018]256)the Natural Science Foundation of Guangdong Province(2014A030312006)the China Postdoctoral Science Foundation(2019 M653129)。
文摘We report that atomically thin two-dimensional silicon quantum sheets(2D Si QSs),prepared by a scalable approach coupling chemical delithiation and cryo-assisted exfoliation,can serve as a highperformance brain photonic nanoagent for orthotopic glioma theranostics.With the lateral size of approximately 14.0 nm and thickness of about 1.6 nm,tiny Si QSs possess high mass extinction coefficient of 27.5 Lg^(-1)cm^(-1)and photothermal conversion efficiency of 47.2%at 808 nm,respectively,concurrently contributing to the best photothermal performance among the reported 2 D mono-elemental materials(Xenes).More importantly,Si QSs with low toxicity maintain the trade-off between stability and degradability,paving the way for practical clinical translation in consideration of both storage and action of nanoagents.In vitro Transwell filter experiment reveals that Si QSs could effectively go across the b End.3 cells monolayer.Upon the intravenous injection of Si QSs,orthotopic brain tumors are effectively inhibited under the precise guidance of photoacoustic imaging,and the survival lifetime of brain tumor-bearing mice is increased by two fold.Atomically thin Si QSs with strong light-harvesting capability are expected to provide an effective and robust 2D photonic nanoplatform for the management of brain diseases.