An analysis of the Stirling and Ericsson cycles from the point of view of the finite time thermodynamics is made by assuming the existence of internal irreversibilities in an engine modeled by these cycles, and the id...An analysis of the Stirling and Ericsson cycles from the point of view of the finite time thermodynamics is made by assuming the existence of internal irreversibilities in an engine modeled by these cycles, and the ideal gas as working substance is considered. Expressions of efficiency in both regimes maximum power output and maximum ecological function are also shown. Appropriate variables are introduced so that the objective functions, namely power output, ecological function and efficiency can be functions of the reservoirs temperatures ratio and certain “measurable” parameters as a thermal conductance, the general constant of gases and the compression ratio of the cycle. Several results from the finite time thermodynamics literature are used, so that the developed methodology leads directly to appropriate expressions of the objective functions in order to simplify the optimization process.展开更多
In this work, a dynamical model of the heartbeat is studied using nonlinear dynamics and considering the time delays inherent in the system. Two fixed points are associated to sustained oscillations which might be int...In this work, a dynamical model of the heartbeat is studied using nonlinear dynamics and considering the time delays inherent in the system. Two fixed points are associated to sustained oscillations which might be interpreted as the diastole and systole These parameters are associated with blood flow in human body called arterial pressure and are very important in the cardio-vascular diagnostic.展开更多
The study of local stability of thermal engines modeled as an endoreversible Curzon and Ahlborn cycle is shown. It is assumed a non-linear heat transfer for heat fluxes in the system (engine + environments). A semisum...The study of local stability of thermal engines modeled as an endoreversible Curzon and Ahlborn cycle is shown. It is assumed a non-linear heat transfer for heat fluxes in the system (engine + environments). A semisum of two expressions of the efficiency found in the literature of finite time thermodynamics for the maximum power output regime is considered in order to make the analysis. Expression of variables for local stability and power output is found even graphic results for important parameters in the analysis of stability, and a phase plane portrait is shown.展开更多
文摘An analysis of the Stirling and Ericsson cycles from the point of view of the finite time thermodynamics is made by assuming the existence of internal irreversibilities in an engine modeled by these cycles, and the ideal gas as working substance is considered. Expressions of efficiency in both regimes maximum power output and maximum ecological function are also shown. Appropriate variables are introduced so that the objective functions, namely power output, ecological function and efficiency can be functions of the reservoirs temperatures ratio and certain “measurable” parameters as a thermal conductance, the general constant of gases and the compression ratio of the cycle. Several results from the finite time thermodynamics literature are used, so that the developed methodology leads directly to appropriate expressions of the objective functions in order to simplify the optimization process.
文摘In this work, a dynamical model of the heartbeat is studied using nonlinear dynamics and considering the time delays inherent in the system. Two fixed points are associated to sustained oscillations which might be interpreted as the diastole and systole These parameters are associated with blood flow in human body called arterial pressure and are very important in the cardio-vascular diagnostic.
文摘The study of local stability of thermal engines modeled as an endoreversible Curzon and Ahlborn cycle is shown. It is assumed a non-linear heat transfer for heat fluxes in the system (engine + environments). A semisum of two expressions of the efficiency found in the literature of finite time thermodynamics for the maximum power output regime is considered in order to make the analysis. Expression of variables for local stability and power output is found even graphic results for important parameters in the analysis of stability, and a phase plane portrait is shown.