The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Tria...The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic(T3 - J1) and one only recently identified in the Late Jurassic to Early Cretaceous(J3 - K1). Few studies have focused on the origin and geotectonic setting of the J3 - K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3 - K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3 - K1 hydrothermal gold systems. Pyrite in breccia-and dykehosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3 - K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni-and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO(East Qinling Orogen), J3 - K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE-and EWtrending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3 - K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior.展开更多
The Pb isotopic composition of rocks is widely used to constrain the sources and mobility of melts and hydrothermal fluids in the Earth's crust. In many cases, the Pb isotopic composition appears to represent mixi...The Pb isotopic composition of rocks is widely used to constrain the sources and mobility of melts and hydrothermal fluids in the Earth's crust. In many cases, the Pb isotopic composition appears to represent mixing of multiple Pb reservoirs. However, the nature, scale and mechanisms responsible for isotopic mixing are not well known. Additionally, the trace element composition of sulphide minerals are routinely used in ore deposit research, mineral exploration and environmental studies, though little is known about element mobility in sulphides during metamorphism and deformation. To investigate the mechanisms of trace element mobility in a deformed Witwatersrand pyrite(FeS_2), we have combined electron backscatter diffraction(EBSD) and atom probe microscopy(APM). The results indicate that the pyrite microstructural features record widely different Pb isotopic compositions, covering the entire range of previously published sulphide Pb compositions from the Witwatersrand basin. We show that entangled dislocations record enhanced Pb, Sb, Ni, Tl and Cu composition likely due to entrapment and short-circuit diffusion in dislocation cores. These dislocations preserve the Pb isotopic composition of the pyrite at the time of growth(~3 Ga) and show that dislocation intersections, likely to be common in deforming minerals, limit trace element mobility. In contrast, Pb, As, Ni, Co, Sb and Bi decorate a highangle grain boundary which formed soon after crystallisation by sub-grain rotation recrystallization.Pb isotopic composition within this boundary indicates the addition of externally-derived Pb and trace elements during greenschist metamorphism at ~2 Ga. Our results show that discrete Pb reservoirs are nanometric in scale, and illustrate that grain boundaries may remain open systems for trace element mobility over 1 billion years after their formation.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 41325007) the GPMR State Key Laboratory (grant MSFGPMR03)+1 种基金the China Geological Survey (Grant No. 1212011120570)National Demonstration Center for Experimental Mineral Exploration Education at China University of Geosciences (Wuhan)
文摘The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic(T3 - J1) and one only recently identified in the Late Jurassic to Early Cretaceous(J3 - K1). Few studies have focused on the origin and geotectonic setting of the J3 - K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3 - K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3 - K1 hydrothermal gold systems. Pyrite in breccia-and dykehosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3 - K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni-and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO(East Qinling Orogen), J3 - K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE-and EWtrending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3 - K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior.
基金The Australian Resource Characterisation Facility (ARCF), under the auspices of the National Resource Sciences Precinct (NRSP) e the collaboration between CSIRO, Curtin University and The University of Western Australia e is supported by the Science and Industry Endowment Fund (SIEF RI13-01) The authors gratefully acknowledge support of Curtin University’s Microscopy & Microanalysis Facility and the John de Laeter Centre, whose instrumentation has been supported by University, State and Commonwealth Government fundingSMR acknowledges support from the ARC Core to Crust Fluid System COE (CE11E0070) and the SIEF Distal Footprints program (RP04-063)
文摘The Pb isotopic composition of rocks is widely used to constrain the sources and mobility of melts and hydrothermal fluids in the Earth's crust. In many cases, the Pb isotopic composition appears to represent mixing of multiple Pb reservoirs. However, the nature, scale and mechanisms responsible for isotopic mixing are not well known. Additionally, the trace element composition of sulphide minerals are routinely used in ore deposit research, mineral exploration and environmental studies, though little is known about element mobility in sulphides during metamorphism and deformation. To investigate the mechanisms of trace element mobility in a deformed Witwatersrand pyrite(FeS_2), we have combined electron backscatter diffraction(EBSD) and atom probe microscopy(APM). The results indicate that the pyrite microstructural features record widely different Pb isotopic compositions, covering the entire range of previously published sulphide Pb compositions from the Witwatersrand basin. We show that entangled dislocations record enhanced Pb, Sb, Ni, Tl and Cu composition likely due to entrapment and short-circuit diffusion in dislocation cores. These dislocations preserve the Pb isotopic composition of the pyrite at the time of growth(~3 Ga) and show that dislocation intersections, likely to be common in deforming minerals, limit trace element mobility. In contrast, Pb, As, Ni, Co, Sb and Bi decorate a highangle grain boundary which formed soon after crystallisation by sub-grain rotation recrystallization.Pb isotopic composition within this boundary indicates the addition of externally-derived Pb and trace elements during greenschist metamorphism at ~2 Ga. Our results show that discrete Pb reservoirs are nanometric in scale, and illustrate that grain boundaries may remain open systems for trace element mobility over 1 billion years after their formation.