目的:探讨骨水泥型人工双极股骨头置换治疗股骨近段转移瘤的临床疗效。方法:回顾性分析2012年1月至2019年6月华中科技大学同济医学院附属协和医院收治的54例行骨水泥型人工双极股骨头置换的股骨近段转移瘤患者的资料。采用疼痛视觉模拟...目的:探讨骨水泥型人工双极股骨头置换治疗股骨近段转移瘤的临床疗效。方法:回顾性分析2012年1月至2019年6月华中科技大学同济医学院附属协和医院收治的54例行骨水泥型人工双极股骨头置换的股骨近段转移瘤患者的资料。采用疼痛视觉模拟评分(visual analogue scale,VAS)、国际骨肿瘤协会(musculoskeletal tumor society system,MSTS)功能评分、国际保肢学会(international society of limb salvage,ISOLS)影像评分、Harris髋关节功能评分量表(Harris hip score)、Karnofsky功能状态(Karnofsky performance status,KPS)评分和诺丁汉健康调查问卷(Nottingham health profile,NHP)评分评定患者疼痛、肢体功能和生存质量。Kaplan-Meier法分析生存情况。结果:患者随访时间为10~99个月,平均42.17个月。患者手术时间(79.68±6.17)min,术中出血量(524.00±39.25)mL。术后3、6和12个月,VAS评分和NHP评分分别较术前降低,MSTS评分、ISOLS评分、Harris评分和KPS评分分别较术前提高,差异均具有统计学意义(P<0.05)。术后3、6和12个月,每个随访点之间的VAS评分、相关功能评分和生存质量评分差异均无统计学意义(P>0.05)。随访期内6例发生并发症。患者平均生存时间19.46个月,6个月、1年和3年生存率分别为88.89%、70.37%和11.11%。结论:股骨近段骨转移瘤患者行骨水泥型人工双极股骨头置换可减轻患者疼痛,提高肢体功能,延长生存时间,提高生存质量。展开更多
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents.Currently,the most common treatment is surgery combined with neoadjuvant chemotherapy.Although the survival rate of patients with...Osteosarcoma is the most common malignant bone tumor affecting children and adolescents.Currently,the most common treatment is surgery combined with neoadjuvant chemotherapy.Although the survival rate of patients with osteosarcoma has improved in recent years,it remains poor when the tumor(s)progress and distant metastases develop.Therefore,better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers,as well as targeted therapies for both primary and metastatic osteosarcoma.The present review described animal models currently being used in research investigating osteosarcoma,and their characteristics,advantages,and disadvantages.These models may help elucidate the pathogenic mechanism(s)of osteosarcoma and provide evidence to support and develop clinical treatment strategies.展开更多
The authors regret that an image assembly(copy/paste)error in Figure 3D,in which the image for the organoid of"Primary MiCs"group was erroneously duplicated with an image of primary MICs that was previously ...The authors regret that an image assembly(copy/paste)error in Figure 3D,in which the image for the organoid of"Primary MiCs"group was erroneously duplicated with an image of primary MICs that was previously published.The corrected figure is shown below.As shown in the corrected Figure 3D,this error does not adversely impact the conclusion of the original work.The authors would like to apologise forany inconvenience caused.展开更多
The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy.Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells.Anti-tumor drugs w...The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy.Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells.Anti-tumor drugs were developed to induce apoptosis,but some patient’s show apoptosis escape and chemotherapy resistance.Therefore,other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment.Ferroptosis is a newly discovered iron-dependent,non-apoptotic type of cell death that is highly negatively correlated with cancer development.Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis.This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.展开更多
Notch is a cellecell signaling pathway that is involved in a host of activities including development,oncogenesis,skeletal homeostasis,and much more.More specifically,recent research has demonstrated the importance of...Notch is a cellecell signaling pathway that is involved in a host of activities including development,oncogenesis,skeletal homeostasis,and much more.More specifically,recent research has demonstrated the importance of Notch signaling in osteogenic differentiation,bone healing,and in the development of the skeleton.The craniofacial skeleton is complex and understanding its development has remained an important focus in biology.In this review we briefly summarize what recent research has revealed about Notch signaling and the current understanding of how the skeleton,skull,and face develop.We then discuss the crucial role that Notch plays in both craniofacial development and the skeletal system,and what importance it may play in the future.展开更多
As multipotent progenitor cells,mesenchymal stem cells(MSCs)can renew themselves and give rise to multiple lineages including osteoblastic,chondrogenic and adipogenic lineages.It’s previously shown that BMP9 is the m...As multipotent progenitor cells,mesenchymal stem cells(MSCs)can renew themselves and give rise to multiple lineages including osteoblastic,chondrogenic and adipogenic lineages.It’s previously shown that BMP9 is the most potent BMP and induces osteogenic and adipogenic differentiation of MSCs.However,the molecular mechanism through which BMP9 regulates MSC differentiation remains poorly understood.Emerging evidence indicates that noncoding RNAs,especially microRNAs,may play important roles in regulating MSC differentiation and bone formation.As highly conserved RNA binding proteins,Argonaute(AGO)proteins are essential components of the multi-protein RNA-induced silencing complexes(RISCs),which are critical for small RNA biogenesis.Here,we investigate possible roles of AGO proteins in BMP9-induced lineage-specific differentiation of MSCs.We first found that BMP9 upregulated the expression of Ago1,Ago2 and Ago3 in MSCs.By engineering multiplex siRNA vectors that express multiple siRNAs targeting individual Ago genes or all four Ago genes,we found that silencing individual Ago expression led to a decrease in BMP9-induced early osteogenic marker alkaline phosphatase(ALP)activity in MSCs.Furthermore,we demonstrated that simultaneously silencing all four Ago genes significantly diminished BMP9-induced osteogenic and adipogenic differentiation of MSCs and matrix mineralization,and ectopic bone formation.Collectively,our findings strongly indicate that AGO proteins and associated small RNA biogenesis pathway play an essential role in mediating BMP9-induced osteogenic differentiation of MSCs.展开更多
Intestinal cancers are developed from intestinal epithelial stem cells(ISCs)in intestinal crypts through a multi-step process involved in genetic mutations of oncogenes and tumor suppressor genes.ISCs play a key role ...Intestinal cancers are developed from intestinal epithelial stem cells(ISCs)in intestinal crypts through a multi-step process involved in genetic mutations of oncogenes and tumor suppressor genes.ISCs play a key role in maintaining the homeostasis of gut epithelium.In 2009,Sato et al established a three-dimensional culture system,which mimicked the niche microenvironment by employing the niche factors,and successfully grew crypt ISCs into organoids or Mini-guts in vitro.Since then,the intestinal organoid technology has been used to delineate cellular signaling in ISC biology.However,the cultured organoids consist of heterogeneous cell populations,and it was technically challenging to introduce genomic changes into three-dimensional organoids.Thus,there was a technical necessity to develop a twodimensional ISC culture system for effective genomic manipulations.In this study,we established a conditionally immortalized mouse intestinal crypt(ciMIC)cell line by using a piggyBac transposon-based SV40 T antigen expression system.We showed that the ciMICs maintained long-term proliferative activity under two-dimensional niche factor-containing culture condition,retained the biological characteristics of intestinal epithelial stem cells,and could form intestinal organoids in three-dimensional culture.While in vivo cell implantation tests indicated that the ciMICs were non-tumorigenic,the ciMICs overexpressing oncogenic b-catenin and/or KRAS exhibited high proliferative activity and developed intestinal adenoma-like pathological features in vivo.Collectively,these findings strongly suggested that the engineered ciMICs should be used as a valuable tool cell line to dissect the genetic and/or epigenetic underpinnings of intestinal tumorigenesis.展开更多
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.A...Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing,effective management of large chronic skin wounds remains a clinical challenge.Keratinocytes are critical to re-epithelialization and wound healing.Here,we investigated whether exogenous keratinocytes,in combination with a citrate-based scaffold,enhanced skin wound healing.We first established reversibly immortalized mouse keratinocytes(iKera),and confirmed that the iKera cells expressed keratinocyte markers,and were responsive to UVB treatment,and were non-tumorigenic.In a proof-of-principle experiment,we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone,in a mouse skin wound model.Thus,these results demonstrate that iKera cells may serve as a valuable skin epithelial source when,combining with appropriate biocompatible scaffolds,to investigate cutaneous wound healing and skin regeneration.展开更多
Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membra...Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membrane lipids,proteins and genomic DNA,purifi-cation of pDNA from bulk lysate,and concentration of pDNA for downstream applications.While many liquid-phase and solid-phase pDNA purification methods are used,the final pDNA preparations are usually contaminated with varied degrees of host RNA,which cannot be completely digested by RNase A.To develop a simple,cost-effective,and yet effective method for RNA depletion,we investigated whether commercially available size selection magnetic beads(SSMBs),such as Mag-Bind®TotalPure NGS Kit(or Mag-Bind),can completely deplete bacterial RNA in pDNA preparations.In this proof-of-principle study,we demonstrated that,compared with RNase A digestion and two commercial plasmid affinity purification kits,the SSMB method was highly efficient in depleting contaminating RNA from pDNA minipreps.Gene transfection and bacterial colony formation assays revealed that pDNA purified from SSMB method had superior quality and integrity to pDNA samples cleaned up by RNase A digestion and/or commercial plasmid purification kits.We further demonstrated that the SSMB method completely depleted contaminating RNA in large-scale pDNA samples.Furthermore,the Mag-bind-based SSMB method costs only 5-10%of most commercial plasmid purification kits on a per sample basis.Thus,the reported SSMB method can be a valuable and inexpensive tool for the removal of bacterial RNA for routine pDNA preparations.展开更多
文摘目的:探讨骨水泥型人工双极股骨头置换治疗股骨近段转移瘤的临床疗效。方法:回顾性分析2012年1月至2019年6月华中科技大学同济医学院附属协和医院收治的54例行骨水泥型人工双极股骨头置换的股骨近段转移瘤患者的资料。采用疼痛视觉模拟评分(visual analogue scale,VAS)、国际骨肿瘤协会(musculoskeletal tumor society system,MSTS)功能评分、国际保肢学会(international society of limb salvage,ISOLS)影像评分、Harris髋关节功能评分量表(Harris hip score)、Karnofsky功能状态(Karnofsky performance status,KPS)评分和诺丁汉健康调查问卷(Nottingham health profile,NHP)评分评定患者疼痛、肢体功能和生存质量。Kaplan-Meier法分析生存情况。结果:患者随访时间为10~99个月,平均42.17个月。患者手术时间(79.68±6.17)min,术中出血量(524.00±39.25)mL。术后3、6和12个月,VAS评分和NHP评分分别较术前降低,MSTS评分、ISOLS评分、Harris评分和KPS评分分别较术前提高,差异均具有统计学意义(P<0.05)。术后3、6和12个月,每个随访点之间的VAS评分、相关功能评分和生存质量评分差异均无统计学意义(P>0.05)。随访期内6例发生并发症。患者平均生存时间19.46个月,6个月、1年和3年生存率分别为88.89%、70.37%和11.11%。结论:股骨近段骨转移瘤患者行骨水泥型人工双极股骨头置换可减轻患者疼痛,提高肢体功能,延长生存时间,提高生存质量。
基金supported by the National Natural Science Foundation of China(No.82274559,81904231,82072978,82072979)the China Postdoctoral Science Foundation(No.2020M672369)the Natural Science Foundation of Hubei Province,China(No.2020CFB861).
文摘Osteosarcoma is the most common malignant bone tumor affecting children and adolescents.Currently,the most common treatment is surgery combined with neoadjuvant chemotherapy.Although the survival rate of patients with osteosarcoma has improved in recent years,it remains poor when the tumor(s)progress and distant metastases develop.Therefore,better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers,as well as targeted therapies for both primary and metastatic osteosarcoma.The present review described animal models currently being used in research investigating osteosarcoma,and their characteristics,advantages,and disadvantages.These models may help elucidate the pathogenic mechanism(s)of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
文摘The authors regret that an image assembly(copy/paste)error in Figure 3D,in which the image for the organoid of"Primary MiCs"group was erroneously duplicated with an image of primary MICs that was previously published.The corrected figure is shown below.As shown in the corrected Figure 3D,this error does not adversely impact the conclusion of the original work.The authors would like to apologise forany inconvenience caused.
基金This study was supported by The National Natural Science Foundation of China(No.81904231,82072978,82072979)the China Postdoctoral Science Foundation(No.2020M672369)+1 种基金the Natural Science Foundation of Hubei Province(No.2020CFB861)the Postdoctoral Innovation Practice Post in Hubei Province(No.34).
文摘The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy.Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells.Anti-tumor drugs were developed to induce apoptosis,but some patient’s show apoptosis escape and chemotherapy resistance.Therefore,other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment.Ferroptosis is a newly discovered iron-dependent,non-apoptotic type of cell death that is highly negatively correlated with cancer development.Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis.This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.
基金the National Institutes of Health(CA226303to TCH)the U.S.Department of Defense(OR130096 to JMW)+5 种基金the Scoliosis Research Society(TCH and MJL)the Pritzker-Northshore Fellowship at The University of Chicagothe Medical Scientist Training Program of the National Institutes of Health(T32 GM007281)The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430the Mabel Green Myers Research Endowment Fund and The University of Chicago Orthopaedics Alumni Fund。
文摘Notch is a cellecell signaling pathway that is involved in a host of activities including development,oncogenesis,skeletal homeostasis,and much more.More specifically,recent research has demonstrated the importance of Notch signaling in osteogenic differentiation,bone healing,and in the development of the skeleton.The craniofacial skeleton is complex and understanding its development has remained an important focus in biology.In this review we briefly summarize what recent research has revealed about Notch signaling and the current understanding of how the skeleton,skull,and face develop.We then discuss the crucial role that Notch plays in both craniofacial development and the skeletal system,and what importance it may play in the future.
基金The reported work was supported in part by research grants from the National Institutes of Health(CA226303 to TCH,and AR072731 to JY)the Chicago Biomedical Consortium with support from the Searle Funds at The Chicago Community Trust(RRR),and the Scoliosis Research Society(TCH and MJL)+2 种基金WW was supported by the Medical Scientist Training Program of the National Institutes of Health(T32 GM007281)This project was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences(NCATS)of the National Institutes of Health(NIH)through Grant Number 5UL1TR002389-02 that funds the Institute for Translational Medicine(ITM).TCH was supported by the Mabel Green Myers Research Endowment Fund and The University of Chicago Orthopaedics Alumni Fund.
文摘As multipotent progenitor cells,mesenchymal stem cells(MSCs)can renew themselves and give rise to multiple lineages including osteoblastic,chondrogenic and adipogenic lineages.It’s previously shown that BMP9 is the most potent BMP and induces osteogenic and adipogenic differentiation of MSCs.However,the molecular mechanism through which BMP9 regulates MSC differentiation remains poorly understood.Emerging evidence indicates that noncoding RNAs,especially microRNAs,may play important roles in regulating MSC differentiation and bone formation.As highly conserved RNA binding proteins,Argonaute(AGO)proteins are essential components of the multi-protein RNA-induced silencing complexes(RISCs),which are critical for small RNA biogenesis.Here,we investigate possible roles of AGO proteins in BMP9-induced lineage-specific differentiation of MSCs.We first found that BMP9 upregulated the expression of Ago1,Ago2 and Ago3 in MSCs.By engineering multiplex siRNA vectors that express multiple siRNAs targeting individual Ago genes or all four Ago genes,we found that silencing individual Ago expression led to a decrease in BMP9-induced early osteogenic marker alkaline phosphatase(ALP)activity in MSCs.Furthermore,we demonstrated that simultaneously silencing all four Ago genes significantly diminished BMP9-induced osteogenic and adipogenic differentiation of MSCs and matrix mineralization,and ectopic bone formation.Collectively,our findings strongly indicate that AGO proteins and associated small RNA biogenesis pathway play an essential role in mediating BMP9-induced osteogenic differentiation of MSCs.
文摘Intestinal cancers are developed from intestinal epithelial stem cells(ISCs)in intestinal crypts through a multi-step process involved in genetic mutations of oncogenes and tumor suppressor genes.ISCs play a key role in maintaining the homeostasis of gut epithelium.In 2009,Sato et al established a three-dimensional culture system,which mimicked the niche microenvironment by employing the niche factors,and successfully grew crypt ISCs into organoids or Mini-guts in vitro.Since then,the intestinal organoid technology has been used to delineate cellular signaling in ISC biology.However,the cultured organoids consist of heterogeneous cell populations,and it was technically challenging to introduce genomic changes into three-dimensional organoids.Thus,there was a technical necessity to develop a twodimensional ISC culture system for effective genomic manipulations.In this study,we established a conditionally immortalized mouse intestinal crypt(ciMIC)cell line by using a piggyBac transposon-based SV40 T antigen expression system.We showed that the ciMICs maintained long-term proliferative activity under two-dimensional niche factor-containing culture condition,retained the biological characteristics of intestinal epithelial stem cells,and could form intestinal organoids in three-dimensional culture.While in vivo cell implantation tests indicated that the ciMICs were non-tumorigenic,the ciMICs overexpressing oncogenic b-catenin and/or KRAS exhibited high proliferative activity and developed intestinal adenoma-like pathological features in vivo.Collectively,these findings strongly suggested that the engineered ciMICs should be used as a valuable tool cell line to dissect the genetic and/or epigenetic underpinnings of intestinal tumorigenesis.
基金The reported study was supported in part by research grants from the 2019 Chongqing Support Program for Entrepreneurship and Innovation(No.cx2019113)(JF)the 2019 Science and Technology Research Plan Project of Chongqing Education Commission(KJQN201900410)(JF)+9 种基金the 2019 Youth Innovative Talent Training Program of Chongqing Education Commission(No.CY200409)(JF)the 2019 Funding for Postdoctoral Research(Chongqing Human Resources and Social Security Bureau No.298)(JF)and the National Key Research and Development Program of China(2016YFC1000803)RRR,TCH and GAA were partially funded by the National Institutes of Health(DE030480)WW was supported by the Medical Scientist Training Program of the National Institutes of Health(T32 GM007281)This project was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430TCH was also supported by the Mabel Green Myers Research Endowment Fund,The University of Chicago Orthopaedics Alumni Fund,and The University of Chicago SHOCK Fund.Funding sources were not involved in the study designin the collection,analysis and/or interpretation of datain the writing of the reportor in the decision to submit the paper for publication.
文摘Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing,effective management of large chronic skin wounds remains a clinical challenge.Keratinocytes are critical to re-epithelialization and wound healing.Here,we investigated whether exogenous keratinocytes,in combination with a citrate-based scaffold,enhanced skin wound healing.We first established reversibly immortalized mouse keratinocytes(iKera),and confirmed that the iKera cells expressed keratinocyte markers,and were responsive to UVB treatment,and were non-tumorigenic.In a proof-of-principle experiment,we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone,in a mouse skin wound model.Thus,these results demonstrate that iKera cells may serve as a valuable skin epithelial source when,combining with appropriate biocompatible scaffolds,to investigate cutaneous wound healing and skin regeneration.
基金supported in part by research grants from the China Postdoctoral Science Foundation(2019M663446 to ZZ)the Postdoctoral Program of the Natural Science Foundation of Chongqing,China(cstc2019jcyj-bsh0006 to ZZ)+6 种基金WW was supported by the Medical Scientist Training Program of the National Institutes of Health(T32 GM007281)This project was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430TCH was supported by the Mabel Green Myers Research Endowment Fund and The University of Chicago Orthopaedics Alumni Fund.Funding sources were not involved in the study designin the collection,analysis and interpretation of datain the writing of the reportand in the decision to submit the paper for publication.
文摘Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membrane lipids,proteins and genomic DNA,purifi-cation of pDNA from bulk lysate,and concentration of pDNA for downstream applications.While many liquid-phase and solid-phase pDNA purification methods are used,the final pDNA preparations are usually contaminated with varied degrees of host RNA,which cannot be completely digested by RNase A.To develop a simple,cost-effective,and yet effective method for RNA depletion,we investigated whether commercially available size selection magnetic beads(SSMBs),such as Mag-Bind®TotalPure NGS Kit(or Mag-Bind),can completely deplete bacterial RNA in pDNA preparations.In this proof-of-principle study,we demonstrated that,compared with RNase A digestion and two commercial plasmid affinity purification kits,the SSMB method was highly efficient in depleting contaminating RNA from pDNA minipreps.Gene transfection and bacterial colony formation assays revealed that pDNA purified from SSMB method had superior quality and integrity to pDNA samples cleaned up by RNase A digestion and/or commercial plasmid purification kits.We further demonstrated that the SSMB method completely depleted contaminating RNA in large-scale pDNA samples.Furthermore,the Mag-bind-based SSMB method costs only 5-10%of most commercial plasmid purification kits on a per sample basis.Thus,the reported SSMB method can be a valuable and inexpensive tool for the removal of bacterial RNA for routine pDNA preparations.