As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
Noise from the machine on coal working face seriously influenced the miners' physical and mental health, and also, due to the noise, there may be a major hidden danger in safety from accidents as all safety warnin...Noise from the machine on coal working face seriously influenced the miners' physical and mental health, and also, due to the noise, there may be a major hidden danger in safety from accidents as all safety warning signals may be masked by the noise. This paper summarized the features of mine environmental noise on working face, such as the variety of noise sources, the continuity of high intensity and slow attenuation in narrow space, etc.The main projects about noise forecasting and controlling on working face was emphatically expounded;the development status about mines machinery noise mechanism and environmental noise acoustic characteristics of space-time of these main research topics were also introduced.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
基金Supported by the National Natural Science Foundation of China(50975087)the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars,Ministry of Education,China(37)Key Research Project of Hunan Province Office of Education(09A026)
文摘Noise from the machine on coal working face seriously influenced the miners' physical and mental health, and also, due to the noise, there may be a major hidden danger in safety from accidents as all safety warning signals may be masked by the noise. This paper summarized the features of mine environmental noise on working face, such as the variety of noise sources, the continuity of high intensity and slow attenuation in narrow space, etc.The main projects about noise forecasting and controlling on working face was emphatically expounded;the development status about mines machinery noise mechanism and environmental noise acoustic characteristics of space-time of these main research topics were also introduced.