期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis and comparison of retinal vascular parameters under different glucose metabolic status based on deep learning
1
作者 Yan Jiang di gong +7 位作者 Xiao-Hong Chen Lin Yang Jing-Jing Xu Qi-Jie Wei Bin-Bin Chen Yong-Jiang Cai Wen-Qun Xi Zhe Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1581-1591,共11页
AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential ... AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential of artificial intelligence(AI)in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.METHODS:Retinal fundus photos from 200 normal individuals,200 prediabetic patients,and 200 diabetic patients(600 eyes in total)were used.The U-Net network served as the foundational architecture for retinal arteryvein segmentation.An automatic segmentation and evaluation system for retinal vascular parameters was trained,encompassing 26 parameters.RESULTS:Significant differences were found in retinal vascular parameters across normal,prediabetes,and diabetes groups,including artery diameter(P=0.008),fractal dimension(P=0.000),vein curvature(P=0.003),C-zone artery branching vessel count(P=0.049),C-zone vein branching vessel count(P=0.041),artery branching angle(P=0.005),vein branching angle(P=0.001),artery angle asymmetry degree(P=0.003),vessel length density(P=0.000),and vessel area density(P=0.000),totaling 10 parameters.CONCLUSION:The deep learning-based model facilitates retinal vascular parameter identification and quantification,revealing significant differences.These parameters exhibit potential as biomarkers for prediabetes and diabetes. 展开更多
关键词 deep learning retinal vascular parameters segmentation model DIABETES PREDIABETES
原文传递
Development and research status of intelligent ophthalmology in China
2
作者 di gong Wang-Ting Li +7 位作者 Xiao-Meng Li Cheng Wan Yong-Jin Zhou Shu-Jun Wang Jian-Tao Wang Yan-Wu Xu Shao-Chong Zhang Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第12期2308-2315,共8页
This paper analyzes the current status,technological developments,academic exchange platforms,and future challenges and solutions in the field of intelligent ophthalmology(IO)in China.In terms of technology,significan... This paper analyzes the current status,technological developments,academic exchange platforms,and future challenges and solutions in the field of intelligent ophthalmology(IO)in China.In terms of technology,significant progress has been made in various areas,including diabetic retinopathy,fundus image analysis,quality assessment of medical artificial intelligence products,clinical research methods,technical evaluation,and industry standards.Researchers continually enhance the safety and standardization of IO technology by formulating a series of clinical application guidelines and standards.The establishment of domestic and international academic exchange platforms provides extensive collaboration opportunities for professionals in various fields,and various academic journals serve as publication platforms for IO research.However,challenges such as technological innovation,data privacy and security,lagging regulations,and talent shortages still pose obstacles to future development.To address these issues,future efforts should focus on strengthening technological research and development,regulatory framework construction,talent cultivation,and increasing patient awareness and acceptance of new technologies.By comprehensively addressing these challenges,IO in China is poised to further lead the industry’s development on a global scale,bringing more innovation and convenience to the field of ophthalmic healthcare. 展开更多
关键词 intelligent ophthalmology image analysis academic exchange
原文传递
植物类囊体主要膜脂及其生物合成
3
作者 刘潇潇 巩迪 +2 位作者 高天鹏 殷俐娜 王仕稳 《植物学报》 CAS CSCD 北大核心 2024年第1期144-155,共12页
叶绿体是绿色植物进行光合作用的主要场所,类囊体是叶绿体中膜结构的主要成分。植物类囊体膜上分布着多种色素蛋白复合物和脂质。其中脂质成分约一半是糖脂质,主要包括单半乳糖甘油二酯、双半乳糖甘油二酯和硫代异鼠李糖甘油二酯。磷脂... 叶绿体是绿色植物进行光合作用的主要场所,类囊体是叶绿体中膜结构的主要成分。植物类囊体膜上分布着多种色素蛋白复合物和脂质。其中脂质成分约一半是糖脂质,主要包括单半乳糖甘油二酯、双半乳糖甘油二酯和硫代异鼠李糖甘油二酯。磷脂在类囊体膜中的占比很小,主要成分为磷脂酰甘油。光合作用相关的大多数色素蛋白复合物都镶嵌在排列规则的极性脂上,这些膜脂对植物光合作用和生长发育至关重要。深入了解原核/真核生物类囊体膜中主要脂质的结构、功能及其生物合成,有助于阐明光合作用光能及物质转化的调控机理,为植物类囊体膜脂研究提供理论依据。 展开更多
关键词 生物合成 双半乳糖甘油二酯 单半乳糖甘油二酯 磷脂酰甘油 硫代异鼠李糖甘油二酯
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部