期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Phenotypic research on senile osteoporosis caused by SIRT6 deficiency 被引量:6
1
作者 De-Mao Zhang di-xin cui +4 位作者 Ruo-Shi Xu Ya-Chuan Zhou Li-Wei Zheng Peng Liu Xue-Dong Zhou 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第2期84-92,共9页
Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing,which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of... Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing,which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of this disease caused by SIRT6 knock out(KO) in mice. To the best of our knowledge, this is the first study to reveal that SIRT6 is expressed in both bone marrow stroma cells and bone-related cells in both mouse and human models, which suggests that SIRT6 is an important regulator in bone metabolism. SIRT6-KO mice exhibit a significant decrease in body weight and remarkable dwarfism. The skeleton of the SIRT6-KO mouse is deficient in cartilage and mineralized bone tissue. Moreover, the osteocalcin concentration in blood is lower, which suggests that bone mass is markedly lost. Besides, the tartrate-resistant acid phosphatase 5b(TRAP5b)concentration is much higher, which suggests that bone resorption is overactive. Both trabecular and cortical bones exhibit severe osteopenia, and the bone mineral density is decreased. Moreover, double-labelling analysis shows that bone formation is much slower. To determine whether SIRT6 directly regulates bone metabolism, we cultured primary bone marrow stromal cells for osteogenesis and osteoclastogenesis separately to avoid indirect interference in vivo responses such as inflammation. Taken together, these results show that SIRT6 can directly regulate osteoblast proliferation and differentiation, resulting in attenuation in mineralization. Furthermore, SIRT6 can directly regulate osteoclast differentiation and results in a higher number of small osteoclasts, which may be related to overactive bone resorption. 展开更多
关键词 骨质疏松症 基因缺陷 老年性 表型 骨髓间充质干细胞 骨髓基质细胞 破骨细胞 成骨细胞
下载PDF
Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics 被引量:7
2
作者 Ying Liu Lu Gan +4 位作者 di-xin cui Si-Han Yu Yue Pan Li-Wei Zheng Mian Wan 《World Journal of Stem Cells》 SCIE 2021年第11期1647-1666,共20页
Regenerative endodontics(RE)therapy means physiologically replacing damaged pulp tissue and regaining functional dentin–pulp complex.Current clinical RE procedures recruit endogenous stem cells from the apical papill... Regenerative endodontics(RE)therapy means physiologically replacing damaged pulp tissue and regaining functional dentin–pulp complex.Current clinical RE procedures recruit endogenous stem cells from the apical papilla,periodontal tissue,bone marrow and peripheral blood,with or without application of scaffolds and growth factors in the root canal space,resulting in cementum-like and bone-like tissue formation.Without the involvement of dental pulp stem cells(DPSCs),it is unlikely that functional pulp regeneration can be achieved,even though acceptable repair can be acquired.DPSCs,due to their specific odontogenic potential,high proliferation,neurovascular property,and easy accessibility,are considered as the most eligible cell source for dentin–pulp regeneration.The regenerative potential of DPSCs has been demonstrated by recent clinical progress.DPSC transplantation following pulpectomy has successfully reconstructed neurovascularized pulp that simulates the physiological structure of natural pulp.The self-renewal,proliferation,and odontogenic differentiation of DPSCs are under the control of a cascade of transcription factors.Over recent decades,epigenetic modulations implicating histone modifications,DNA methylation,and noncoding(nc)RNAs have manifested as a new layer of gene regulation.These modulations exhibit a profound effect on the cellular activities of DPSCs.In this review,we offer an overview about epigenetic regulation of the fate of DPSCs;in particular,on the proliferation,odontogenic differentiation,angiogenesis,and neurogenesis.We emphasize recent discoveries of epigenetic molecules that can alter DPSC status and promote pulp regeneration through manipulation over epigenetic profiles. 展开更多
关键词 Dental pulp stem cells Regenerative endodontics Epigenetic regulation Noncoding RNAs Histone deacetylase inhibitor DNA methyltransferase inhibitor
下载PDF
New insight into dental epithelial stem cells:Identification,regulation,and function in tooth homeostasis and repair 被引量:1
3
作者 Lu Gan Ying Liu +2 位作者 di-xin cui Yue Pan Mian Wan 《World Journal of Stem Cells》 SCIE 2020年第11期1327-1340,共14页
Tooth enamel,a highly mineralized tissue covering the outermost area of teeth,is always damaged by dental caries or trauma.Tooth enamel rarely repairs or renews itself,due to the loss of ameloblasts and dental epithel... Tooth enamel,a highly mineralized tissue covering the outermost area of teeth,is always damaged by dental caries or trauma.Tooth enamel rarely repairs or renews itself,due to the loss of ameloblasts and dental epithelial stem cells(DESCs)once the tooth erupts.Unlike human teeth,mouse incisors grow continuously due to the presence of DESCs that generate enamel-producing ameloblasts and other supporting dental epithelial lineages.The ready accessibility of mouse DESCs and wide availability of related transgenic mouse lines make mouse incisors an excellent model to examine the identity and heterogeneity of dental epithelial stem/progenitor cells;explore the regulatory mechanisms underlying enamel formation;and help answer the open question regarding the therapeutic development of enamel engineering.In the present review,we update the current understanding about the identification of DESCs in mouse incisors and summarize the regulatory mechanisms of enamel formation driven by DESCs.The roles of DESCs during homeostasis and repair are also discussed,which should improve our knowledge regarding enamel tissue engineering. 展开更多
关键词 Dental epithelial stem cells Tissue engineering Label-retaining cells Lineage tracing Single-cell sequencing
下载PDF
Metabolic-epigenetic nexus in regulation of stem cell fate
4
作者 Yi Liu di-xin cui +3 位作者 Yue Pan Si-Han Yu Li-Wei Zheng Mian Wan 《World Journal of Stem Cells》 SCIE 2022年第7期490-502,共13页
Stem cell fate determination is one of the central questions in stem cell biology,and although its regulation has been studied at genomic and proteomic levels,a variety of biological activities in cells occur at the m... Stem cell fate determination is one of the central questions in stem cell biology,and although its regulation has been studied at genomic and proteomic levels,a variety of biological activities in cells occur at the metabolic level.Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination.While metabolism is considered to play a biological regulatory role as an energy source,recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms,including histone modification,DNA methylation,and microRNAs.Additionally,the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription.The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites.In the present review,we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination,and discuss the potential preventive and therapeutic strategies via targeting metabolites. 展开更多
关键词 METABOLISM Epigenetic regulation Stem cell fate Nexus effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部