期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predicting of dust storm source by combining remote sensing, statistic-based predictive models and game theory in the Sistan watershed, southwestern Asia 被引量:1
1
作者 Mahdi BOROUgHANI Sima POURHASHEMI +1 位作者 Hamid gHOLAMI dimitris g kaskaoutis 《Journal of Arid Land》 SCIE CSCD 2021年第11期1103-1121,共19页
Dust storms in arid and desert areas affect radiation budget,air quality,visibility,enzymatic activities,agricultural products and human health.Due to increased drought and land use changes in recent years,the frequen... Dust storms in arid and desert areas affect radiation budget,air quality,visibility,enzymatic activities,agricultural products and human health.Due to increased drought and land use changes in recent years,the frequency of dust storms occurrence in Iran has been increased.This study aims to identify dust source areas in the Sistan watershed(Iran-Afghanistan borders)-an important regional source for dust storms in southwestern Asia,using remote sensing(RS)and bivariate statistical models.Furthermore,this study determines the relative importance of factors controlling dust emissions using frequency ratio(FR)and weights of evidence(WOE)models and interpretability of predictive models using game theory.For this purpose,we identified 211 dust sources in the study area and generated a dust source distribution map-inventory map-by dust source potential index based on RS data.In addition,spatial maps of topographic factors affecting dust source areas including soil,lithology,slope,Normalized difference vegetation index(NDVI),geomorphology and land use were prepared.The performance of two models(WOE and FR)was evaluated using the area under curve(AUC)of the receiver operating characteristic curve.The results showed that soil,geomorphology and slope exhibited the greatest influence in the dust source areas.The 55.3%(according to FR)and 62.6%(according to WOE)of the total area were classified as high and very high potential dust sources,while both models displayed acceptable accuracy with subsurface levels of 0.704 for FR and 0.751 for WOE,although they predict different fractions of dust potential classes.Based on Shapley additive explanations(SHAP),three factors,i.e.,soil,slope and NDVI have the highest impact on the model's output.Overall,combination of statistic-based predictive models(or data mining models),RS and game theory techniques can provide accurate maps of dust source areas in arid and semi-arid regions,which can be helpful for mitigation of negative effects of dust storms. 展开更多
关键词 potential dust source remote sensing frequency ratio weight of evidence dust emission
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部