Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness an...Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.展开更多
The AlSi20/8009 aluminum alloy was heated to high temperatures near the melting point and cooled to investigate the effect of external Si addition on the phase evolution of Al12(Fe,V)3 Si dispersion. Differential scan...The AlSi20/8009 aluminum alloy was heated to high temperatures near the melting point and cooled to investigate the effect of external Si addition on the phase evolution of Al12(Fe,V)3 Si dispersion. Differential scanning calorimeter, scanning electron microscope, energy dispersive spectrometer and X-ray diffractometer were employed.The results showed that Al12(Fe,V)3 Si and Si phases evolved into a needle-like Al4.5 Fe Si phase and a nano-sized V-rich phase during holding the alloy at 580-600℃. With increasing holding temperature to 620-640℃, Al4.5 Fe Si and nano-sized V-rich phases evolved reversibly into Al12(Fe,V)3 Si and Si phases, of which Al12(Fe,V)3 Si occupied a coarse and hexagonal morphology. During the alloy(after holding at 640 ℃) furnace cooling to 570 ℃ or lower, Si and Al12(Fe,V)3 Si phases evolved into strip-like Al4.5 Fe Si and the V-rich phases, which is a novel formation route for Al4.5 Fe Si phase different from Al-Fe-Si ternary system.展开更多
The present work examined the anisotropy magnitudes obtained from different elastic models of cubic metals(Cu,5383 Al alloy,FCC austenite steel and BCC steel)to explore the origin of strain anisotropy.The results show...The present work examined the anisotropy magnitudes obtained from different elastic models of cubic metals(Cu,5383 Al alloy,FCC austenite steel and BCC steel)to explore the origin of strain anisotropy.The results showed that stable intersections were observed from the modeled and experimental plots of the reciprocal elastic modulus(1/Ehkl)and orientation parameter(Γ).The effectiveness of quasi elasto-plastic model based method in correcting strain anisotropy was further verified in cold-worked specimens.For the important input parameters in dislocation model based diffraction line profile analysis methods,the average diffraction contrast factors(■)of dislocations were observed to depend on elastic constants.Interesting intersections were found from linear dependence of■onΓ.The conventional input■values indicated distinct dependencies on given elastic constants in diffraction line profile analysis.Accordingly,a refined approach was proposed by adopting the optimized intersections as input values,by which more reliable results could be obtained in practical applications.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51574118, 51571087, 51674292)the Natural Science Foundation of Hunan Province (No. 2015JJ4017)+1 种基金the Project of Innovation-driven Plan in Central South University (No. 2016CX007)the Hunan Provincial Science and Technology Plan Project, China (No. 2016TP1007)
文摘Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.
基金Project(CX20190310)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(51574118)supported by the National Natural Science Foundation of China+1 种基金Project(2016GK4056)supported by Key Technologies R&D in Strategic Emerging Industries and Transformation in High-tech Achievements Program of Hunan Province,ChinaProject(2018GK5068)supported by Innovation and Entrepreneurship Technology Investment Project of Hunan Province,China。
文摘The AlSi20/8009 aluminum alloy was heated to high temperatures near the melting point and cooled to investigate the effect of external Si addition on the phase evolution of Al12(Fe,V)3 Si dispersion. Differential scanning calorimeter, scanning electron microscope, energy dispersive spectrometer and X-ray diffractometer were employed.The results showed that Al12(Fe,V)3 Si and Si phases evolved into a needle-like Al4.5 Fe Si phase and a nano-sized V-rich phase during holding the alloy at 580-600℃. With increasing holding temperature to 620-640℃, Al4.5 Fe Si and nano-sized V-rich phases evolved reversibly into Al12(Fe,V)3 Si and Si phases, of which Al12(Fe,V)3 Si occupied a coarse and hexagonal morphology. During the alloy(after holding at 640 ℃) furnace cooling to 570 ℃ or lower, Si and Al12(Fe,V)3 Si phases evolved into strip-like Al4.5 Fe Si and the V-rich phases, which is a novel formation route for Al4.5 Fe Si phase different from Al-Fe-Si ternary system.
基金Project(51904099)supported by the National Natural Science Foundation of ChinaProject(531118010353)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The present work examined the anisotropy magnitudes obtained from different elastic models of cubic metals(Cu,5383 Al alloy,FCC austenite steel and BCC steel)to explore the origin of strain anisotropy.The results showed that stable intersections were observed from the modeled and experimental plots of the reciprocal elastic modulus(1/Ehkl)and orientation parameter(Γ).The effectiveness of quasi elasto-plastic model based method in correcting strain anisotropy was further verified in cold-worked specimens.For the important input parameters in dislocation model based diffraction line profile analysis methods,the average diffraction contrast factors(■)of dislocations were observed to depend on elastic constants.Interesting intersections were found from linear dependence of■onΓ.The conventional input■values indicated distinct dependencies on given elastic constants in diffraction line profile analysis.Accordingly,a refined approach was proposed by adopting the optimized intersections as input values,by which more reliable results could be obtained in practical applications.