Anti-perovskites X3BA,as the electrically inverted derivatives of perovskites ABX3,have attracted tremendous attention for their good performances in multiple disciplines,especially in energy storage batteries.The Li/...Anti-perovskites X3BA,as the electrically inverted derivatives of perovskites ABX3,have attracted tremendous attention for their good performances in multiple disciplines,especially in energy storage batteries.The Li/Na-rich antiperovskite(LiRAP/NaRAP)solid-state electrolytes(SSEs)typically show high ionic conductivities and high chemical/electrochemical stability toward the Li-metal anode,illustrating their great potential for applications in the Limetal batteries(LMBs)using nonaqueous liquid electrolyte or all-solid-state electrolyte.The antiperovskites have been studied as artificial solid electrolyte interphase for Li-metal anode protection,film SSEs for thin-film batteries,and low melting temperature solid electrolyte enabling melt-infiltration for the manufacture of all-solid-state lithium batteries.Transition metal-doped LiRAPs as cathodes have demonstrated a high discharge specific capacity and good rate capability in the Li-ion batteries(LIBs).Additionally,the underlying scientific principles in antiperovskites with flexible structural features have also been extensively studied.In this review,we comprehensively summarize the development,structural design,ionic conductivity and ion transportation mechanism,chemical/electrochemical stability,and applications of some antiperovskite materials in energy storage batteries.The perspective for enhancing the performance of the antiperovskites is also provided as a guide for future development and applications in energy storage.展开更多
基金Key Program of the National Natural Science Foundationof China,Grant/Award Number:51732005Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515011784+1 种基金Key Laboratory of Energy Conversion and Storage Technologies(Southern University of Science and Technology),Ministry of EducationShenzhen Science and Technology Program,Grant/Award Number:KQTD20200820113047086。
文摘Anti-perovskites X3BA,as the electrically inverted derivatives of perovskites ABX3,have attracted tremendous attention for their good performances in multiple disciplines,especially in energy storage batteries.The Li/Na-rich antiperovskite(LiRAP/NaRAP)solid-state electrolytes(SSEs)typically show high ionic conductivities and high chemical/electrochemical stability toward the Li-metal anode,illustrating their great potential for applications in the Limetal batteries(LMBs)using nonaqueous liquid electrolyte or all-solid-state electrolyte.The antiperovskites have been studied as artificial solid electrolyte interphase for Li-metal anode protection,film SSEs for thin-film batteries,and low melting temperature solid electrolyte enabling melt-infiltration for the manufacture of all-solid-state lithium batteries.Transition metal-doped LiRAPs as cathodes have demonstrated a high discharge specific capacity and good rate capability in the Li-ion batteries(LIBs).Additionally,the underlying scientific principles in antiperovskites with flexible structural features have also been extensively studied.In this review,we comprehensively summarize the development,structural design,ionic conductivity and ion transportation mechanism,chemical/electrochemical stability,and applications of some antiperovskite materials in energy storage batteries.The perspective for enhancing the performance of the antiperovskites is also provided as a guide for future development and applications in energy storage.