为了提高多场景应用的技术经济性,本文对电池储能系统状态估计进行了综述。首先,分析了电池性能衰减的机理,介绍了目前常用的物理建模和数据建模方法,进而对荷电状态(state of charge,SOC)和健康状态(state of health,SOH)进行了定义与...为了提高多场景应用的技术经济性,本文对电池储能系统状态估计进行了综述。首先,分析了电池性能衰减的机理,介绍了目前常用的物理建模和数据建模方法,进而对荷电状态(state of charge,SOC)和健康状态(state of health,SOH)进行了定义与关联性分析,并对电池及其系统的状态估计方法进行了汇总;其次,为了获取更多精确的电池运行数据,重点介绍了能够刻画电池内部演化机理的原位/非原位表征技术,进而分析了嵌入式电池管理系统(battery management system,BMS)实际应用的主流开发路线;第三,提出了基于联邦学习的电池储能系统状态估计方法,基于轻量化模型在本地进行电池储能系统SOC的估计以保证控制实时性,基于大数据驱动策略在云中心进行其SOH估计以保证容量可信度,由此实现云边的交互与协同;最后,对电池储能系统未来可能的发展方向和研究重点进行了预测。研究结果表明:活性锂损失是锂离子电池容量衰退的主要原因,高温、低温、过充放等滥用也会加速电池性能衰减;数据驱动在电池系统级建模与状态评估方面具有较大优势;利用原位/非原位表征技术可以获取更多的电池内部状态数据,基于FPGA的BMS轻量化建模更易实现,基于联邦学习的状态评估方法能够提高电池储能系统的智慧化运维水平。展开更多
F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM...F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F_(10.7)预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为5.38,平均绝对百分比误差(MAPE)控制在5%以内,相关系数(R)高达0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F_(10.7)数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F_(10.7)指数方面具有较好的优势,表现出较好的预测性能和稳定性.展开更多
随着空间卫星的广泛使用,射电天文望远镜受到高仰角的干扰越来越多,进一步确定整个天空中卫星干扰源的频率、位置和分布,是有效规划天文观测的重要手段。本文介绍了一种基于时频差对高仰角卫星干扰源定位的方法,即基于时频差信息,将干...随着空间卫星的广泛使用,射电天文望远镜受到高仰角的干扰越来越多,进一步确定整个天空中卫星干扰源的频率、位置和分布,是有效规划天文观测的重要手段。本文介绍了一种基于时频差对高仰角卫星干扰源定位的方法,即基于时频差信息,将干扰源定位解构为时频差联合估计与定位的问题。首先建立用于时频差联合估计的地面接收信号模型,基于四阶最大似然进行到达时间差(time difference of arrival,TDOA)与到达频率差(frequency difference of arrival,FDOA)的联合估计;然后建立干扰源定位模型,根据两步加权最小二乘算法对干扰源进行定位。经过仿真验证,实现了对高仰角快速运动干扰源的定位与轨迹估计,对于300 km高度干扰源的定位误差最小可达到78 m。利用基于联合时频差分析的卫星干扰源定位算法进行射电天文台址无线电环境测量可提升射电望远镜的科学产出,并保障其平稳运行。展开更多
文摘为了提高多场景应用的技术经济性,本文对电池储能系统状态估计进行了综述。首先,分析了电池性能衰减的机理,介绍了目前常用的物理建模和数据建模方法,进而对荷电状态(state of charge,SOC)和健康状态(state of health,SOH)进行了定义与关联性分析,并对电池及其系统的状态估计方法进行了汇总;其次,为了获取更多精确的电池运行数据,重点介绍了能够刻画电池内部演化机理的原位/非原位表征技术,进而分析了嵌入式电池管理系统(battery management system,BMS)实际应用的主流开发路线;第三,提出了基于联邦学习的电池储能系统状态估计方法,基于轻量化模型在本地进行电池储能系统SOC的估计以保证控制实时性,基于大数据驱动策略在云中心进行其SOH估计以保证容量可信度,由此实现云边的交互与协同;最后,对电池储能系统未来可能的发展方向和研究重点进行了预测。研究结果表明:活性锂损失是锂离子电池容量衰退的主要原因,高温、低温、过充放等滥用也会加速电池性能衰减;数据驱动在电池系统级建模与状态评估方面具有较大优势;利用原位/非原位表征技术可以获取更多的电池内部状态数据,基于FPGA的BMS轻量化建模更易实现,基于联邦学习的状态评估方法能够提高电池储能系统的智慧化运维水平。
文摘F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F_(10.7)预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为5.38,平均绝对百分比误差(MAPE)控制在5%以内,相关系数(R)高达0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F_(10.7)数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F_(10.7)指数方面具有较好的优势,表现出较好的预测性能和稳定性.
文摘随着空间卫星的广泛使用,射电天文望远镜受到高仰角的干扰越来越多,进一步确定整个天空中卫星干扰源的频率、位置和分布,是有效规划天文观测的重要手段。本文介绍了一种基于时频差对高仰角卫星干扰源定位的方法,即基于时频差信息,将干扰源定位解构为时频差联合估计与定位的问题。首先建立用于时频差联合估计的地面接收信号模型,基于四阶最大似然进行到达时间差(time difference of arrival,TDOA)与到达频率差(frequency difference of arrival,FDOA)的联合估计;然后建立干扰源定位模型,根据两步加权最小二乘算法对干扰源进行定位。经过仿真验证,实现了对高仰角快速运动干扰源的定位与轨迹估计,对于300 km高度干扰源的定位误差最小可达到78 m。利用基于联合时频差分析的卫星干扰源定位算法进行射电天文台址无线电环境测量可提升射电望远镜的科学产出,并保障其平稳运行。