A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state fee...A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.展开更多
This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filteri...This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.展开更多
A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by...A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by combining the nonlinear missile dynamics with the nonlinear dynamics describing the pursuit situation of a missile and a target in the three-dimensional space. The integrated guidance and autopilot design problem is further converted to a state regulation problem of a time-varying nonlinear system with matched and unmatched uncertainties. A new and simple adaptive block dynamic surface control algorithm is proposed to address such a state regulation problem. The stability of the closed-loop system is proven based on the Lyapunov theory. The six degrees of freedom (6DOF) nonlinear numerical simulation results show that the proposed integrated guidance and autopilot algorithm can ensure the accuracy of target interception and the robust stability of the closed-loop system with respect to the uncertainties in the missile dynamics.展开更多
Control moment gyroscope(CMG)is a typical attitude control system component for satellites and mobile robots,and the online fault diagnosis of CMG is crucial because it determines the stability and accuracy of the att...Control moment gyroscope(CMG)is a typical attitude control system component for satellites and mobile robots,and the online fault diagnosis of CMG is crucial because it determines the stability and accuracy of the attitude control system.This paper develops a data-driven CMG fault diagnosis scheme based on a new CNN method.In this design,seven types of fault signals are converted into spectrum datasets through short-time Fourier transformation(STFT),and a new CNN network scheme called AECB-CNN is proposed based on attention-enhanced convolutional blocks(AECB).AECB-CNN can achieve high training accuracy for the CMG fault diagnosis datasets under different sliding window parameters.Finally,simulation results indicate that the proposed fault diagnosis method can achieve an accuracy of nearly 95%in 1.28 s and 100%in 2.56 s,respectively.展开更多
This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix e...This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations, complete parametric control approaches for high-order linear systems are presented. The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices, and produce all the design degrees of freedom. Fur-thermore, important special cases are particularly treated. Based on the proposed parametric design approaches, a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out. The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.展开更多
基金This project was supported by a Program for Changjiang Scholars and an Innovative Research Team in the University and the National Natural Science Foundation of P. R. China (60474015).
文摘A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.
基金supported by the Major Program of National Natural Science Foundation of China(60710002)the Program for Changjiang Scholars and Innovative Research Team in University.
文摘This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.
基金the Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.2013039)the National Natural Science Foundation of China(Nos.61203125 and 61021002)
文摘A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by combining the nonlinear missile dynamics with the nonlinear dynamics describing the pursuit situation of a missile and a target in the three-dimensional space. The integrated guidance and autopilot design problem is further converted to a state regulation problem of a time-varying nonlinear system with matched and unmatched uncertainties. A new and simple adaptive block dynamic surface control algorithm is proposed to address such a state regulation problem. The stability of the closed-loop system is proven based on the Lyapunov theory. The six degrees of freedom (6DOF) nonlinear numerical simulation results show that the proposed integrated guidance and autopilot algorithm can ensure the accuracy of target interception and the robust stability of the closed-loop system with respect to the uncertainties in the missile dynamics.
基金supported by the Science Center Program of the National Natural Science Foundation of China(Grant No.62188101)the National Natural Science Foundation of China(Grant Nos.61833009,61690212,51875119,61903219,and 62073183)+2 种基金the Heilongjiang Touyan Teamthe Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)。
文摘Control moment gyroscope(CMG)is a typical attitude control system component for satellites and mobile robots,and the online fault diagnosis of CMG is crucial because it determines the stability and accuracy of the attitude control system.This paper develops a data-driven CMG fault diagnosis scheme based on a new CNN method.In this design,seven types of fault signals are converted into spectrum datasets through short-time Fourier transformation(STFT),and a new CNN network scheme called AECB-CNN is proposed based on attention-enhanced convolutional blocks(AECB).AECB-CNN can achieve high training accuracy for the CMG fault diagnosis datasets under different sliding window parameters.Finally,simulation results indicate that the proposed fault diagnosis method can achieve an accuracy of nearly 95%in 1.28 s and 100%in 2.56 s,respectively.
基金Supported by the Major Program of the National Natural Science Foundation of China (Grant No. 60710002)the Program for Changjiang Scholars and Innovative Research Team in University, Self-planed Task of State Key Laboratory of Robotics and System (Grant No.SKLRS200801A03)and the Key Programs of Heilongjiang Province (Grant No. ZJC603)
文摘This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback. By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations, complete parametric control approaches for high-order linear systems are presented. The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices, and produce all the design degrees of freedom. Fur-thermore, important special cases are particularly treated. Based on the proposed parametric design approaches, a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out. The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.