期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
QubitE:用于知识图谱补全的量子嵌入模型 被引量:2
1
作者 林学渊 鄂海红 +2 位作者 宋文宇 罗浩然 宋美娜 《计算机科学》 CSCD 北大核心 2023年第11期201-209,共9页
知识图谱补全任务通过预测知识图谱中缺失的事实补全知识图谱。基于量子的知识图谱嵌入(KGE)模型利用变分量子电路,通过测量量子比特状态的概率分布对三元组进行评分,评分高的三元组即为缺失的事实。但是目前基于量子的KGE要么在优化过... 知识图谱补全任务通过预测知识图谱中缺失的事实补全知识图谱。基于量子的知识图谱嵌入(KGE)模型利用变分量子电路,通过测量量子比特状态的概率分布对三元组进行评分,评分高的三元组即为缺失的事实。但是目前基于量子的KGE要么在优化过程中失去了量子优势,矩阵酉性被破坏,要么需要大量参数用于存储量子态,从而导致过拟合和低性能。此外,这些方法忽略了对于理解模型性能必不可少的理论分析。为了解决性能问题和弥合理论差距,提出了QubitE模型:将实体嵌入作为量子位(单位复向量),将关系嵌入作为量子门(酉复矩阵),评分过程为复矩阵乘法,利用核方法进行优化。该模型的参数化方式能在优化中保持量子优势,时空复杂度为线性,甚至可以进一步实现基于语义的量子逻辑计算。此外,从理论上可以证明该模型具有完全表达性、关系模式推理能力和包含性等,有助于理解模型性能。实验表明,QubitE在一些基准知识图谱上可以取得与最先进的经典模型相当的结果。 展开更多
关键词 知识图谱 知识图谱补全 知识图谱嵌入 表示学习 量子比特
下载PDF
基于云边协同的智能城市轨道交通PHM系统 被引量:1
2
作者 罗浩然 姚天宇 +1 位作者 鄂海红 万开阳 《软件》 2023年第2期13-16,共4页
城市轨道交通系统对我国经济发展有巨大作用,确保系统中各功能部件的健康对其正常运行至关重要。PHM技术在云边协同技术的赋能下能够为城市轨道交通的安全运行提供更加系统、精准与高效的保障。在本文中,我们首先提出全新的基于云边协... 城市轨道交通系统对我国经济发展有巨大作用,确保系统中各功能部件的健康对其正常运行至关重要。PHM技术在云边协同技术的赋能下能够为城市轨道交通的安全运行提供更加系统、精准与高效的保障。在本文中,我们首先提出全新的基于云边协同的智能城市轨道交通PHM系统;之后,分别介绍我们所使用的云边协同、PHM技术及其在轨道交通系统中的初步应用,并综合二者优势,详细介绍全新系统的工作原理;最后针对本研究目前面临的问题与挑战,给出云边协同PHM系统未来的研究方向与思路。 展开更多
关键词 云边协同 深度学习 轨道交通系统 预测与健康管理
下载PDF
高血压超关系知识图谱建模及用药决策推理实践
3
作者 谢晓璇 鄂海红 +5 位作者 匡泽民 谭玲 周庚显 罗浩然 李峻迪 宋美娜 《中文信息学报》 CSCD 北大核心 2023年第3期65-78,共14页
传统的知识建模方法在医学场景下面临着知识复杂性高、难以通过传统三元组的方式精确表达等问题,需要研究新的本体对医学知识进行建模。该文提出一种应用于高血压领域的三层超关系知识图谱模型(Triple-view Hypertension Hyper-relation... 传统的知识建模方法在医学场景下面临着知识复杂性高、难以通过传统三元组的方式精确表达等问题,需要研究新的本体对医学知识进行建模。该文提出一种应用于高血压领域的三层超关系知识图谱模型(Triple-view Hypertension Hyper-relational Knowledge Graph,THH-KG),该方法基于超关系知识图谱模型搭建计算层、概念层、实例层三层图谱架构,实现多元的医学逻辑规则、概念知识和实例知识的联合表达。此外,该文还提出了在普通图数据库中超关系知识图谱的通用存储方法,且基于该方法设计了高血压知识图谱推理解释引擎(Hypertension Knowledge Graph Reasoning Engine,HKG-RE),实现了基于医学规则的用药推荐辅助决策应用。上述方法在对108位真实高血压患者的用药推荐实验中正确率达到了97.2%。 展开更多
关键词 多元关系 超关系知识图谱 高血压 用药推荐
下载PDF
双向全局对齐:用于实体对齐任务的自举方法
4
作者 林学渊 鄂海红 +2 位作者 宋文宇 罗浩然 宋美娜 《中国科技论文在线精品论文》 2023年第2期144-147,共4页
为了进一步改进数据质量,提出了双向全局过滤的自举策略,不仅考虑单向的、局部的对齐,还采取具有一对一约束的最近邻选择算法捕捉全局结构和双向对齐信息,从全局确保一个源实体与一个目标实体对齐,从而减少错误样本并生成高质量的训练... 为了进一步改进数据质量,提出了双向全局过滤的自举策略,不仅考虑单向的、局部的对齐,还采取具有一对一约束的最近邻选择算法捕捉全局结构和双向对齐信息,从全局确保一个源实体与一个目标实体对齐,从而减少错误样本并生成高质量的训练数据。最终在3个真实世界中的跨语言数据集上的实验结果Hits@1平均稳定在96%左右,这表明本文方法能够有效地自动标注训练数据,并产生高质量的对齐结果,从而提高实体对齐的准确性和可靠性。该方法对于知识图谱的合并和扩展具有广泛的应用前景。 展开更多
关键词 人工智能 知识图谱 实体对齐 自举
原文传递
基于带权图的多维大数据模型优化算法 被引量:1
5
作者 鄂海红 田川 宋美娜 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期22-28,共7页
针对传统的物化视图选择(materialized view selection,MVS)算法评价指标单一(仅评价物化时间,过度追求物化视图的查询命中率)会导致超高维度时的维度灾难以及物化视图集频繁抖动的问题,本文提出了一种基于带权图的多维大数据模型优化算... 针对传统的物化视图选择(materialized view selection,MVS)算法评价指标单一(仅评价物化时间,过度追求物化视图的查询命中率)会导致超高维度时的维度灾难以及物化视图集频繁抖动的问题,本文提出了一种基于带权图的多维大数据模型优化算法(multi-dimensional big data model optimization,MMO),通过引入平均查询时延和膨胀率评价指标,基于带权图模型找出物化视图集的最优解。实验结果表明,本文算法在综合评分、平均查询时延、膨胀率方面均优于粒子群算法(particle swarm optimization,PSO),解决了超高维数据下的维度灾难问题,并且能够快速收敛。 展开更多
关键词 多维大数据 物化视图选择 视图集抖动 带权图 膨胀率
下载PDF
医学知识图谱构建关键技术及研究进展 被引量:18
6
作者 谭玲 鄂海红 +8 位作者 匡泽民 宋美娜 刘毓 陈正宇 谢晓璇 李峻迪 范家伟 王晴川 康霄阳 《大数据》 2021年第4期80-104,共25页
随着互联网技术的不断迭代更新,对海量数据的语义理解变得越来越重要。知识图谱是一种揭示实体之间关系的语义网络,医学是知识图谱应用较广的垂直领域之一,医学知识图谱的构建也是目前国内外人工智能领域研究的热点。从医学知识图谱本... 随着互联网技术的不断迭代更新,对海量数据的语义理解变得越来越重要。知识图谱是一种揭示实体之间关系的语义网络,医学是知识图谱应用较广的垂直领域之一,医学知识图谱的构建也是目前国内外人工智能领域研究的热点。从医学知识图谱本体构建出发,依次对命名实体识别、实体关系抽取、实体对齐、实体链接、知识图谱存储、知识图谱应用进行综述,详细介绍了近年来医学知识图谱构建过程中涉及的难点、现有技术、挑战及未来研究方向,并介绍了医学知识图谱应用,最后对未来发展方向进行了展望。 展开更多
关键词 医学知识图谱 构建 关键技术 研究进展
下载PDF
基于深度学习光学相干断层扫描辅助诊断常见眼底疾病 被引量:5
7
作者 何佳雯 王莉菲 +7 位作者 张如如 谭玲 刘毓 王晴川 陈正宇 范家伟 鄂海红 宋美娜 《中国医学影像技术》 CSCD 北大核心 2021年第8期1229-1233,共5页
光学相干断层扫描(OCT)分辨率高且无创,是临床诊断眼底疾病的主要手段。深度学习(DL)具有高效、准确的特点,近年来在医疗领域迅速发展,并已在眼科取得一定成果。本文围绕基于DL的OCT辅助诊断常见眼底疾病研究进展进行综述。
关键词 眼底 人工智能 体层摄影术 光学相干
下载PDF
QoS prediction algorithm used in location-aware hybrid Web service 被引量:2
8
作者 e haihong Tong Junjie +1 位作者 Song Meina Song Junde 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第1期42-49,共8页
Quality-of-Service (QoS) describes the non-functional characteristics of Web services. As such, the QoS is a critical parameter in service selection, composition and fault tolerance, and must be accurately determine... Quality-of-Service (QoS) describes the non-functional characteristics of Web services. As such, the QoS is a critical parameter in service selection, composition and fault tolerance, and must be accurately determined by some type of QoS prediction method. However, with the dramatic increase in the number of Web services, the prediction failure caused by data sparseness has become a critical challenge. A new 'hybrid user-location-aware prediction based on weighted Adamic-Adar (WAA)' (HUWAA) was proposed. The implicit neighbor search was optimized by incorporating location factors. Meanwhile, the ability of the improved algorithms to solve the data sparsity problem was validated in experiments on public real world datasets. The new algorithm outperforms the existing of item-based pearson correlation coefficient (IPCC), user-based pearson correlation coefficient (UPCC) and Web service recommender system (WSRec) algorithms. 展开更多
关键词 service QoS prediction data sparsity link prediction LOCATION-AWARE
原文传递
Social media mining and visualization for point-o f-interest recommendation
9
作者 Ren Xingyi Song Meina +1 位作者 e haihong Song Junde 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2017年第1期67-76,86,共11页
With the rapid growth of location-based social networks (LBSNs), point-of-interest (POI) recommendation has become an important research problem. As one of the most representative social media platforms, Twitter p... With the rapid growth of location-based social networks (LBSNs), point-of-interest (POI) recommendation has become an important research problem. As one of the most representative social media platforms, Twitter provides various real-life information for POI recommendation in real time. Despite that POI recommendation has been actively studied, tweet images have not been well utilized for this research problem. State-of-the-art visual features like convolutional neural network (CNN) features have shown significant performance gains over the traditional bag-of-visual-words in unveiling the image's semantics. Unfortunately, they have not been employed for POI recommendation from social websites. Hence, how to make the most of tweet images to improve the performance of POI recommendation and visualization remains open In this paper, we thoroughly study the impact of tweet images on POI recommendation for different POI categories using various visual features. A novel topic model called social media Twitter-latent Dirichlet allocation (SM-TwitterLDA) which jointly models five Twitter features, (i.e., text, image, location, timestamp and hashtag) is designed to discover POIs from the sheer amount of tweets. Moreover, each POI is visualized by representative images selected on three predefined criteria. Extensive experiments have been conducted on a real-life tweet dataset to verify the effectiveness of our method. 展开更多
关键词 social media TWITTER POI recommendation VISUALIZATION
原文传递
Vision-based positioning system
10
作者 Song Meina Ou Zhonghong +2 位作者 e haihong Song Junde Zhao Xuejun 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第5期88-96,共9页
Conventional outdoor navigation systems are usually based on orbital satellites, e.g., global positioning system (GPS) and global navigation satellite system (GLONASS). The latest advances from wearable, e.g., Bai... Conventional outdoor navigation systems are usually based on orbital satellites, e.g., global positioning system (GPS) and global navigation satellite system (GLONASS). The latest advances from wearable, e.g., BaiduEye and Google Glass, have enabled new approaches to leverage information from the surrounding environment. For example, they enable the change from passively receiving information to actively requesting information. Thus, such changes might inspire brand new application scenarios that were not possible before. In this work, we propose a vision-based navigation system based on wearable like Baidu Eye. We discuss the associated challenges and propose potential solutions for each of them. The system utilizes crowd sensing to collect and build a traffic signpost database for positioning reference. Then it leverages context information, such as cell identification (Cell ID), signal strength, and altitude combined with traffic sign detection and recognition to enable real-time positioning. A hybrid cloud architecture is proposed to enhance the capability of sensing devices (SD) to realize the proposed vision. 展开更多
关键词 VISION-BASED positioning system WEARABLE machine vision
原文传递
Textual-geographical-social aware point-of-interest recommendation
11
作者 Ren Xingyi Song Meina +1 位作者 e haihong Song Junde 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第6期24-33,67,共11页
The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is pers... The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is personalized, location-aware, and context depended. However, extreme sparsity of user-POI matrix creates a severe challenge. In this paper we propose a textual-geographical-social aware probabilistic matrix factorization method for POI recommendation. Our model is textual-geographical-social aware probabilistic matrix factorization called TGS-PMF, it exploits textual information, geographical information, social information, and incorporates these factors effectively. First, we exploit an aggregated latent Dirichlet allocation(LDA) model to learn the interest topics of users and infer the interest POIs by mining textual information associated with POIs and generate interest relevance score. Second, we propose a kernel estimation method with an adaptive bandwidth to model the geographical correlations and generate geographical relevance score. Third, we build social relevance through the power-law distribution of user social relations to generate social relevance score. Then, our exploit probabilistic matrix factorization model(PMF) to integrate the interest, geographical, social relevance scores for POI recommendation. Finally, we implement experiments on a real LBSN check-in dataset. Experimental results show that TGS-PMF achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques. 展开更多
关键词 location-based social networks POI recommendation topic model geographical correlations social correlations
原文传递
Joint model of user check-in activities for point-of-interest recommendation
12
作者 Ren Xingyi Song Meina +1 位作者 e haihong Song Junde 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第4期25-36,共12页
With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel o... With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques. 展开更多
关键词 POI recommendation user check-in activities joint probabilistic generative model geographical influence social influence temporal effect content information popularity information
原文传递
用于湿性AMD辅助诊断的双模态深度学习模型 被引量:1
13
作者 鄂海红 何佳雯 +1 位作者 袁立飞 宋美娜 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第12期64-70,共7页
为解决眼科医生阅片工作量过大的问题,将深度学习技术应用于湿性年龄相关性黄斑变性(AMD)辅助诊断领域.针对只考虑单一模态的医学影像且未将湿性AMD进行更细化的分类,构建了适用于深度学习的双模态湿性AMD数据集,并提出一种双模态湿性AM... 为解决眼科医生阅片工作量过大的问题,将深度学习技术应用于湿性年龄相关性黄斑变性(AMD)辅助诊断领域.针对只考虑单一模态的医学影像且未将湿性AMD进行更细化的分类,构建了适用于深度学习的双模态湿性AMD数据集,并提出一种双模态湿性AMD辅助诊断模型Wet-AMD-Net.针对不同的特征提取模型与不同的特征融合策略进行实验,效果最优的模型受试者工作特征曲线下面积(AUROC)、召回率、精确度分别达到0.9881,0.9792和0.9821,超过了有多年工作经验的4位眼科医生的平均水平,用于临床辅助诊断具有实用性. 展开更多
关键词 深度学习 卷积神经网络 双模态 图像分类 湿性年龄相关性黄斑变性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部