This paper discusses comparison of two time series decomposition methods: The Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. As noted by Iwueze and Nwogu (2014), there exists a research gap f...This paper discusses comparison of two time series decomposition methods: The Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. As noted by Iwueze and Nwogu (2014), there exists a research gap for the choice of appropriate model for decomposition and detection of presence of seasonal effect in a series model. Estimates of trend parameters and seasonal indices are all that are needed to fill the research gap. However, these estimates are obtainable through the Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. Hence, there is need to compare estimates of the two methods and recommend. The comparison of the two methods is done using the Accuracy Measures (Mean Error (ME)), Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE). The results from simulated series show that for the additive model;the summary statistics (ME, MSE and MAE) for the two estimation methods and for all the selected trending curves are equal in all the simulations both in magnitude and direction. For the multiplicative model, results show that when a series is dominated by trend, the estimates of the parameters by both methods become less precise and differ more widely from each other. However, if conditions for successful transformation (using the logarithmic transform in linearizing the multiplicative model to additive model) are met, both of them give similar results.展开更多
This paper proposes new methods of estimating missing values in time series data while comparing them with existing methods. The new methods are based on the row, column and overall averages of time series data arrang...This paper proposes new methods of estimating missing values in time series data while comparing them with existing methods. The new methods are based on the row, column and overall averages of time series data arranged in a Buys-Ballot table with m rows and s columns. The methods assume that 1) only one value is missing at a time, 2) the trending curve may be linear, quadratic or exponential and 3) the decomposition method is either Additive or Multiplicative. The performances of the methods are assessed by comparing accuracy measures (MAE, MAPE and RMSE) computed from the deviations of estimates of the missing values from the actual values used in simulation. Results show that, under the stated assumptions, estimates from the new method based on full decomposition of a series is the best (in terms of the accuracy measures) when compared with other two new and the existing methods.展开更多
文摘This paper discusses comparison of two time series decomposition methods: The Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. As noted by Iwueze and Nwogu (2014), there exists a research gap for the choice of appropriate model for decomposition and detection of presence of seasonal effect in a series model. Estimates of trend parameters and seasonal indices are all that are needed to fill the research gap. However, these estimates are obtainable through the Least Squares Estimation (LSE) and Buys-Ballot Estimation (BBE) methods. Hence, there is need to compare estimates of the two methods and recommend. The comparison of the two methods is done using the Accuracy Measures (Mean Error (ME)), Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE). The results from simulated series show that for the additive model;the summary statistics (ME, MSE and MAE) for the two estimation methods and for all the selected trending curves are equal in all the simulations both in magnitude and direction. For the multiplicative model, results show that when a series is dominated by trend, the estimates of the parameters by both methods become less precise and differ more widely from each other. However, if conditions for successful transformation (using the logarithmic transform in linearizing the multiplicative model to additive model) are met, both of them give similar results.
文摘This paper proposes new methods of estimating missing values in time series data while comparing them with existing methods. The new methods are based on the row, column and overall averages of time series data arranged in a Buys-Ballot table with m rows and s columns. The methods assume that 1) only one value is missing at a time, 2) the trending curve may be linear, quadratic or exponential and 3) the decomposition method is either Additive or Multiplicative. The performances of the methods are assessed by comparing accuracy measures (MAE, MAPE and RMSE) computed from the deviations of estimates of the missing values from the actual values used in simulation. Results show that, under the stated assumptions, estimates from the new method based on full decomposition of a series is the best (in terms of the accuracy measures) when compared with other two new and the existing methods.