This paper investigates the three-dimensional flow of a Sisko fluid over a bidirectional stretching sheet, in a porous medium. By using the effect of Cattaneo-Christov heat flux model, heat transfer analysis is illust...This paper investigates the three-dimensional flow of a Sisko fluid over a bidirectional stretching sheet, in a porous medium. By using the effect of Cattaneo-Christov heat flux model, heat transfer analysis is illustrated. Using similarity transformation the governing partial differential equations are transferred into a system of ordinary differential equations that are solved numerically by applying Nachtsheim-Swigert shooting iteration technique along with the 6-th order Runge-Kutta integration scheme. The effect of various physical parameters such as Sisko fluid, ratio parameter,thermal conductivity, porous medium, radiation parameter, Brownian motion, thermophoresis, Prandtl number, and Lewis number are graphically represented.展开更多
基金Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)Funded by the Korea Government under Grant Nos.2015H1 and C1A1035890the MSIP(No.2015R1A2A2A01006803),(No.2017R1A2B2010603)+1 种基金the Program of Small and Medium Business by SMBA,WC300 R and D(S2415805)Department of Science and Technology,India through INSPIRE Junior Research Fellowship under Grant No.IF 150438
文摘This paper investigates the three-dimensional flow of a Sisko fluid over a bidirectional stretching sheet, in a porous medium. By using the effect of Cattaneo-Christov heat flux model, heat transfer analysis is illustrated. Using similarity transformation the governing partial differential equations are transferred into a system of ordinary differential equations that are solved numerically by applying Nachtsheim-Swigert shooting iteration technique along with the 6-th order Runge-Kutta integration scheme. The effect of various physical parameters such as Sisko fluid, ratio parameter,thermal conductivity, porous medium, radiation parameter, Brownian motion, thermophoresis, Prandtl number, and Lewis number are graphically represented.