We revisit the two-component Majorana equation and derive it in a new form by linearizing the relativistic dispersion relation of a massive particle, in a way similar to that used to derive the Dirac equation. We are ...We revisit the two-component Majorana equation and derive it in a new form by linearizing the relativistic dispersion relation of a massive particle, in a way similar to that used to derive the Dirac equation. We are using thereby the Pauli spin matrices, corresponding to an irreducible representation of the Lorentz group, and a lucid and transparent algebraic approach exploiting the newly introduced spin-flip operator. Thus we can readily build up the Majorana version of the Dirac equation in its chiral representation. The Lorentz-invariant complex conjugation operation involves the spin-flip operator, and its connection to chiral symmetry is discussed. The eigenfunctions of the Majorana equation are calculated in a concise way.展开更多
A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including...A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including an electromagnetic field will be written as an eight-component real spinor equation by separating it into its real and imaginary parts. Through this decomposition, what becomes obvious is the way in which the electromagnetic field couples to charged fermions (electron and positron) when being described by real spinor fields. Thus, contrary to common expectation, charged fermions can also be described by a real Dirac equation if they are considered as a doublet related to the SO(2) symmetry group, which enables a matrix coupling to the electromagnetic field and corresponds to the usual U(1) gauge symmetry of the standard Dirac equation.展开更多
文摘We revisit the two-component Majorana equation and derive it in a new form by linearizing the relativistic dispersion relation of a massive particle, in a way similar to that used to derive the Dirac equation. We are using thereby the Pauli spin matrices, corresponding to an irreducible representation of the Lorentz group, and a lucid and transparent algebraic approach exploiting the newly introduced spin-flip operator. Thus we can readily build up the Majorana version of the Dirac equation in its chiral representation. The Lorentz-invariant complex conjugation operation involves the spin-flip operator, and its connection to chiral symmetry is discussed. The eigenfunctions of the Majorana equation are calculated in a concise way.
文摘A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including an electromagnetic field will be written as an eight-component real spinor equation by separating it into its real and imaginary parts. Through this decomposition, what becomes obvious is the way in which the electromagnetic field couples to charged fermions (electron and positron) when being described by real spinor fields. Thus, contrary to common expectation, charged fermions can also be described by a real Dirac equation if they are considered as a doublet related to the SO(2) symmetry group, which enables a matrix coupling to the electromagnetic field and corresponds to the usual U(1) gauge symmetry of the standard Dirac equation.