We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in t...We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in the proposed design, where each individual optical arm exhibits its original performances providing parallel multi-band observations within a few different scales simultaneously. These optical arms have the beam shapers providing both the needed incident light polarization and apodization to increase the dynamic range. After parallel acousto-optical processing, data flows of all the optical arms are united by the joint CCD matrix on the stage of the combined electronic data processing. The second novelty is in usage of unique wide-aperture bastron-based acousto-optical cell providing one of the best performances at the middle-frequencies (about 500 MHz) in comparison with the other available crystalline materials in this range. Such multi-band capabilities have a number of applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Thus one yields the united versatile instrument, which provides comprehensive studies of astrophysical objects simultaneously with precise synchronization in various frequency ranges.展开更多
文摘We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in the proposed design, where each individual optical arm exhibits its original performances providing parallel multi-band observations within a few different scales simultaneously. These optical arms have the beam shapers providing both the needed incident light polarization and apodization to increase the dynamic range. After parallel acousto-optical processing, data flows of all the optical arms are united by the joint CCD matrix on the stage of the combined electronic data processing. The second novelty is in usage of unique wide-aperture bastron-based acousto-optical cell providing one of the best performances at the middle-frequencies (about 500 MHz) in comparison with the other available crystalline materials in this range. Such multi-band capabilities have a number of applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Thus one yields the united versatile instrument, which provides comprehensive studies of astrophysical objects simultaneously with precise synchronization in various frequency ranges.