期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Flavin-Containing Monooxygenase (FMO) Protein Expression and Its Activity in Rat Brain Microvascular Endothelial Cells
1
作者 eiichi sakurai Yukari Ueda +2 位作者 Yukari Mori Yasuhumi Shinmyouzu Eiko sakurai 《Pharmacology & Pharmacy》 2013年第1期1-6,共6页
The aim of this study was to examine whether flavin-containing monooxygenase (FMO) protein was expressed in cultured rat brain microvascular endothelial cells (BMECs), which constitute the blood-brain barrier (BBB), a... The aim of this study was to examine whether flavin-containing monooxygenase (FMO) protein was expressed in cultured rat brain microvascular endothelial cells (BMECs), which constitute the blood-brain barrier (BBB), and whether N-oxide from the tertiary amine, d-chlorpheniramine, was formed by FMO in rat BMECs. BMECs were isolated and cultured from the brains of three-week-old male Wistar rats. The expression of FMO1, FMO2 and FMO5 proteins was confirmed in rat BMECs by western blotting analysis using polyclonal anti-FMO antibodies, but FMO3 and FMO4 proteins were not found in the rat BBB. Moreover, N-oxide of d-chlorpheniramine was formed in rat BMECs. The intrinsic clearance value for N-oxidation at pH 8.4 was higher than that at pH 7.4. Inhibition of N-oxide formation by methimazole was found to be the best model of competitive inhibition yielding an apparent Ki value of 0.53 μmol/L, suggesting that N-oxidation was catalyzed by FMOs in rat BMECs. Although FMO activity in rat BMECs was lower than that in SD rat normal hepatocytes (rtNHeps), we suggest that rat BMECs enzymes can convert substrates of exogenous origin for detoxification, indicating that BMECs are an important barrier for metabolic products besides hepatic cells. 展开更多
关键词 Rat MICROVASCULAR Endothelial Cells Flavin-Containing MONOOXYGENASE (FMO) FMO Protein Expression FMO ACTIVITY BBB
下载PDF
Claudin-1 Leads to Strong Formation of Tight Junction in Cultured Mouse Lung Microvascular Endothelial Cells
2
作者 Yukari Ueda Yasuhumi Shinmyouzu +3 位作者 Hikaru Nakayama Tadatoshi Tanino Eiko sakurai eiichi sakurai 《Pharmacology & Pharmacy》 2016年第3期133-139,共7页
We aimed to examine paracellular barrier function in cultured mouse lung microvascular endothelial cells (LMECs). The transcellular resistance of LMEC monolayers yielded an electrical resistance of approximately 19 Ω... We aimed to examine paracellular barrier function in cultured mouse lung microvascular endothelial cells (LMECs). The transcellular resistance of LMEC monolayers yielded an electrical resistance of approximately 19 Ω × cm<sup>2</sup> at days 6 - 7 in culture when the cells reached confluence, and paracellular permeable clearance of sodium fluorescein was the lowest on day 6 in culture, suggesting the formation of tight junctions (TJs) in cultured LMECs. Moreover, the expression of TJ-associated proteins, occludin, claudin-1 and -4 and zonula occludents 1 (ZO-1) was detected in LMECs at day 6 in culture. However, mRNAs of occludin, claudin-1 and -4 and ZO-1 were already expressed on day 1 after culture, and large variations were absent in the mRNA levels of occludin, claudin-4 and ZO-1 between days 1 and 7 in culture, when the level of each mRNA on day 1 in culture was used as a basal level. However, the claudin-1 mRNA level gradually increased up to approximately 7-fold on day 7 in culture over the basal level. These results indicate that the drastic increase in the mRNA expression level of claudin-1 leads to the strong formation of TJs. 展开更多
关键词 Mouse Lung Microvascular Endothelial Cells Paracellular Permeability Tight Junction OCCLUDIN CLAUDINS Zonula Occludents
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部