We present detailed characterization of laser-driven fusion and neutron production(-10^(5)/second) using 8 mJ, 40 fs laser pulses on a thin(<1 μm) D_2O liquid sheet employing a measurement suite. At relativistic i...We present detailed characterization of laser-driven fusion and neutron production(-10^(5)/second) using 8 mJ, 40 fs laser pulses on a thin(<1 μm) D_2O liquid sheet employing a measurement suite. At relativistic intensity(~ 5 × 10^(18)W/cm^(2))and high repetition rate(1 kHz), the system produces deuterium±deuterium(D-D) fusion, allowing for consistent neutron generation. Evidence of D-D fusion neutron production is verified by a measurement suite with three independent detection systems: an EJ-309 organic scintillator with pulse-shape discrimination, a ~3He proportional counter and a set of 36 bubble detectors. Time-of-flight analysis of the scintillator data shows the energy of the produced neutrons to be consistent with 2.45 MeV. Particle-in-cell simulations using the WarpX code support significant neutron production from D-D fusion events in the laser±target interaction region. This high-repetition-rate laser-driven neutron source could provide a low-cost, on-demand test bed for radiation hardening and imaging applications.展开更多
In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some ...In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.展开更多
基金supported by Air Force Office of Scientific Research(AFOSR)Award number 23AFCOR004(PM:Dr.Andrew B.Stickrath)partially supported by DTRANSREC Award number HDTRA-1343332。
文摘We present detailed characterization of laser-driven fusion and neutron production(-10^(5)/second) using 8 mJ, 40 fs laser pulses on a thin(<1 μm) D_2O liquid sheet employing a measurement suite. At relativistic intensity(~ 5 × 10^(18)W/cm^(2))and high repetition rate(1 kHz), the system produces deuterium±deuterium(D-D) fusion, allowing for consistent neutron generation. Evidence of D-D fusion neutron production is verified by a measurement suite with three independent detection systems: an EJ-309 organic scintillator with pulse-shape discrimination, a ~3He proportional counter and a set of 36 bubble detectors. Time-of-flight analysis of the scintillator data shows the energy of the produced neutrons to be consistent with 2.45 MeV. Particle-in-cell simulations using the WarpX code support significant neutron production from D-D fusion events in the laser±target interaction region. This high-repetition-rate laser-driven neutron source could provide a low-cost, on-demand test bed for radiation hardening and imaging applications.
文摘In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.