期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Template-Induced Graphitic Nanodomains in Nitrogen-Doped Carbons Enable High-Performance Sodium-Ion Capacitors
1
作者 Chun Li Zihan Song +6 位作者 Minliang Liu enrico lepre Markus Antonietti Junwu Zhu Jian Liu Yongsheng Fu Nieves López-Salas 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期295-303,共9页
Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assist... Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode. 展开更多
关键词 ANODE graphitic nanodomains N-doped carbons sodium-ion capacitor TEMPLATE
下载PDF
PtRu nanoparticles supported on noble carbons for ethanol electrooxidation
2
作者 Alberto Rodríguez-Gómez enrico lepre +2 位作者 Luz Sánchez-Silva Nieves López-Salas Ana Raquel de la Osa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期168-180,I0006,共14页
In this work,three cytosine derived nitrogen doped carbonaceous materials(noble carbons,NCs)with different atomic C/N ratios and porous networks have been synthesized and used as supports for Pt Ru electrocatalysts in... In this work,three cytosine derived nitrogen doped carbonaceous materials(noble carbons,NCs)with different atomic C/N ratios and porous networks have been synthesized and used as supports for Pt Ru electrocatalysts in the ethanol oxidation reaction(EOR)for clean hydrogen production.Both,the metal phase and the carbon support play critical roles in the electrocatalysts final performance.Lower NPs size distribution was obtained over supports with low atomic C/N ratios(i.e.,4 and 6)and defined porosity(i.e.,1701 m^(2)g^(-1)for Pt Ru/CNZ and 1834 m^(2)g^(-1)for Pt Ru/CLZ,respectively).In contrast,a lower C/N ratio and poor porous network(i.e.,65 m^(2)g^(-1),Pt Ru/CLK)led to the largest particle size and fostered an increase of the alloying degree between Pt and Ru NPs(i.e.,3%for C/N~6 and 28%for C/N~3).Electrochemical active surface area was found to increase with decreasing NPs size and the alloy extent,due to a higher availability of Pt active sites.Accelerated degradation tests showed that Pt Ru/NCs outperform similar to Pt Ru NPs on commercial carbon pointing at the stabilizing effect of NCs.Pt Ru/CNZ exhibited the best electrochemical performance(i.e.,69.1 m A mgPt-1),outperforming Pt Ru/CLZ and Pt Ru/CLK by3-and 9-fold,respectively,due to a suitable compromise between particle sizes,degree of alloy,textural properties and elemental composition.Best anodes were scaled-up to a proton exchange membrane cell and Pt Ru/CNZ was proved to provide the best electrocatalytic activity(262 m A cm^(-2)and low energy requirements),matching the values obtained by the state of the art of EOR electrocatalysts. 展开更多
关键词 Noble carbon CYTOSINE H2 production Ethanol electrooxidation PtRu anode PEM cell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部