The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections ...The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections to various topics and research areas are briefly discussed, including order determination, pattern recognition, data mining, machine learning, statistical regression and manifold embedding. Finally, some results of variable selection in system identification in the recent literature are presented.展开更多
A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and co...A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.展开更多
基金supported by the National Science Foundation(No.CNS-1239509)the National Key Basic Research Program of China(973 program)(No.2014CB845301)+1 种基金the National Natural Science Foundation of China(Nos.61104052,61273193,61227902,61134013)the Australian Research Council(No.DP120104986)
文摘The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections to various topics and research areas are briefly discussed, including order determination, pattern recognition, data mining, machine learning, statistical regression and manifold embedding. Finally, some results of variable selection in system identification in the recent literature are presented.
基金The work was supported partially by NSF ECS-0555394 and NIH/NIBIB EB004287.
文摘A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially.