The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv...The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.展开更多
The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes...The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes(FeNi-Nd_(2)O_(3)/NCN) are designed for highly effective overall water splitting via a facile two-step hydrothermal approach.The synthetic FeNi-Nd_(2)O_(3) hetero-trimers(Fe 2p-Ni 2p-Nd 3d orbital coupling)on NCN achieve excellent oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) activities with overpotentials of 270 and 120 mV at 10 mA cm^(-2) in 1 M KOH solution.Moreover,a small voltage of 1.52 V at 10 mA cm^(-2) is achieved when FeNi-Nd_(2)O_(3)/NCN is assessed as bifunctional catalyst for overall water splitting,which is superior to the typically integrated Pt/C and RuO_(2) counterparts(1.54 V at 10 mA cm^(-2)).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy show that the remarkably improved activity is originated from Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction.Furthermore,density functional theory(DFT) calculations indicate that the lattice contraction reduces binding energies of intermediates by downshifting the position of FeNi bimetallic d-band center relative to the Fermi level to optimize catalytic performance.Therefore,the Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction may provide a new perspective for designing and synthesizing innovative catalytic systems.展开更多
Boron nitrogen(BN)monolayer has attracted considerable attention because of their suc-cessful incorporation with graphene based nanodevices.However,many important aspects of the growth mechanisms are still not well ex...Boron nitrogen(BN)monolayer has attracted considerable attention because of their suc-cessful incorporation with graphene based nanodevices.However,many important aspects of the growth mechanisms are still not well explored.Using density functional theory(DFT)calculations,we found that Cu(111)surface is more suitable to be used as a substrate to grow BN monolayer compared with Ni(111)surface.Moreover,we explored that one-dimensional(1D)BN chain configuration is dominant to the two-dimensional(2D)BN ring formation from one pair to five BN pairs deposited on Cu(111)surface.Energetically stable structure transformation of BN monolayer from 1D BN chain to 2D BN ring occurs when the number of pairs is n>5.It is suggested that,as the number of BN pairs increases the energetically stable structures achieve.展开更多
Although bulk SnP3 has been fabricated by experiments in the 1970’s,its electronic and optical properties within several layers have not been reported.Here,based on first-principles calculations,we have predicted two...Although bulk SnP3 has been fabricated by experiments in the 1970’s,its electronic and optical properties within several layers have not been reported.Here,based on first-principles calculations,we have predicted two-dimensional SnP3 layers as new semiconducting materials that possess indirect band gaps of 0.71 eV(monolayer)and 1.03 eV(bilayer),which are different from the metallic character of bulk structure.Remarkably,2D SnP3 possesses high hole mobility of 9.17×10^4cm^2·V^-1s^-1 and high light absorption(~10^6 cm^-1)in the whole visible spectrum,which predicts 2D SnP3 layers as prospective candidates for nanoelectronics and photovoltaics.Interestingly,we found that 2D SnP3 bilayer shows similar electronic and optical characters of silicon.展开更多
The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,pla...The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks.However,the conventional plasma approach introduces complexities,leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment.In our pursuit of heterostructures with optimized oxygen evolution reaction(OER)behavior,we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni_(3)N-NiO heterostructure(hNiNO).By meticulously controlling the surface heating process during plasma processing,such approach allows for the streamlined fabrication of hNiNO nano-frameworks.The resulting nano-framework exhibits outstanding catalytic performance,as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm^(-2),in an alkaline environment.This stands in stark contrast to the performance of NiO-covered Ni_(3)N fabricated using the conventional plasma method(sNiNO).Operando plasma diagnostics,coupled with numerical simulations,further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni_(3)N-NiO nanostructure,highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.展开更多
The efficiency of photocatalytic CO_(2) reduction reaction(PCRR)is restricted by the low solubility and mobility of CO_(2) in water,poor CO_(2) adsorption capacity of catalyst,and competition with hydrogen evolution r...The efficiency of photocatalytic CO_(2) reduction reaction(PCRR)is restricted by the low solubility and mobility of CO_(2) in water,poor CO_(2) adsorption capacity of catalyst,and competition with hydrogen evolution reaction(HER).Recently,hydrophobic modification of the catalyst surface has been proposed as a potential solution to induce the formation of triple-phase contact points(TPCPs)of CO_(2)(gas phase),H_(2) O(liquid phase),and catalysts(solid phase)near the surface of the catalyst,enabling direct delivery of highly concentrated CO_(2) molecules to the active reaction sites,resulting in higher CO_(2) and lower H+surface concentrations.The TPCPs thus act as the ideal reaction points with enhanced PCRR and suppressed HER.However,the initial synthesis of triple-phase photocatalysts tends to possess a lower bulk density of TPCPs due to the simple structure leading to limited active points and CO_(2) adsorption sites.Here,based on constructing a hydrophobic hierarchical porous TiO_(2)(o-HPT)with interconnected macropores and mesopores structure,we have significantly increased the density of TPCPs in a unit volume of the photocatalyst.Compared with hydrophobic macroporous TiO_(2)(o-MacPT)or mesoporous TiO_(2)(o-MesPT),the o-HPT with increased TPCP density leads to enhanced photoactivity,enabling a high methanol production rate with 1111.5μmol g^(−1) h^(−1) from PCRR.These results emphasize the significance of high-density TPCPs design and propose a potential path for developing efficient PCRR systems.展开更多
Magnetic metal absorbers exhibit remarkable microwave absorption capacity.However,their practical application is severely limited due to their susceptibility to corrosion,particularly in marine environ-ments.To addres...Magnetic metal absorbers exhibit remarkable microwave absorption capacity.However,their practical application is severely limited due to their susceptibility to corrosion,particularly in marine environ-ments.To address this challenge,we propose a novel approach involving the modification and control of FeCo/rGO microwave absorbers using rare earth lanthanum(La).This strategy aims to achieve both high-performance microwave absorption and enhanced resistance to marine corrosion.In this study,we employ a La_(2)O_(3) modifying control strategy to refine the FeCo magnetic particles and coat them with CoFe2O4 on the surface,leveraging the pinning effect of in situ generated La_(2)O_(3) .This process enhances the interface polarization of the absorbers,thereby improving their electromagnetic performance and ma-rine corrosion resistance.Consequently,the La_(2)O_(3) modified FeCo@rGO composites exhibit broadband ab-sorption,covering a wide frequency range of 6.11 GHz at 1.55 mm.Notably,the electromagnetic proper-ties of the La_(2)O_(3) modified FeCo@rGO absorbers remain stable even after prolonged exposure to a 3.5 wt%NaCI solution,simulating marine conditions,for at least 15 days.Furthermore,we perform first-principle calculations on FeCo and FeCo-O to validate the corrosion resistance of the La_(2)O_(3) modified FeCo@rGO composites at the atomic level.This comprehensive investigation explores the control of rare earth lan-thanum modification on the size of magnetic metal particles,enabling efficient electromagnetic wave absorption and marine corrosion resistance.The results of this study provide a novel and facile strategy for the control of microwave absorbers,offering promising prospects for future research and development in this field.展开更多
This review describes recent advances in wettability adjustment to improve the main green energy conversion and storage systems,i.e.,photocatalysis and electrocatalysis.Because both are redox reactions involving elect...This review describes recent advances in wettability adjustment to improve the main green energy conversion and storage systems,i.e.,photocatalysis and electrocatalysis.Because both are redox reactions involving electron behavior,they follow a similar pattern in the surface reaction step,which is related to wettability adjustment.Thus,we consider photocatalysis and electrocatalysis together in terms of mass transfer adjustment based on commonalities,aiming to understand the fundamentals more deeply and bring greater mutual inspiration to photocatalysis and electrocatalysis.The theoretical basis is first laid out,and then various strategies are introduced.Subsequently,according to the different requirements of mass transfer,we classify the photocatalytic and electrocatalytic reactions into gas consumption reactions preferring hydrophobic surfaces,and gas evolution reactions preferring hydrophilic surfaces.Pollutant degradation reactions involving different water-soluble substrates are also mentioned.Further,we introduce the specific optimization effect of wettability regulation on the reaction,and the mechanism behind the effect.This comprehensive and insightful review will provide a strategic guide to the reasonable design and development of wettability-optimized photocatalytic and electrocatalytic systems.展开更多
Photocatalytic hydrogen generation represents a promising strategy for the establishment of a sustainable and environmentally friendly energy reservoir.However,the current solar-to-hydrogen conversion efficiency is no...Photocatalytic hydrogen generation represents a promising strategy for the establishment of a sustainable and environmentally friendly energy reservoir.However,the current solar-to-hydrogen conversion efficiency is not yet sufficient for practical hydrogen production,highlighting the need for further research and development.Here,we report the synthesis of a Sn-doped TiO_(2)continuous homojunction hollow sphere,achieved through controlled calcination time.The incorporation of a gradient doping profile has been demonstrated to generate a gradient in the band edge energy,facilitating carrier orientation migration.Furthermore,the hollow sphere’s outer and inner sides provide spatially separated reaction sites allowing for the separate acceptance of holes and electrons,which enables the rapid utilization of carriers after separation.As a result,the hollow sphere TiO_(2)with gradient Sn doping exhibits a significantly increased hydrogen production rate of 20.1 mmol·g^(−1)·h^(−1).This study offers a compelling and effective approach to the designing and fabricating highly efficient nanostructured photocatalysts for solar energy conversion applications.展开更多
One variety of ferroelectricity that results from lateral relative movements between the adjacent atomic layers is referred to as sliding ferroelectricity,which generates an interfacial charge transfer and hence a pol...One variety of ferroelectricity that results from lateral relative movements between the adjacent atomic layers is referred to as sliding ferroelectricity,which generates an interfacial charge transfer and hence a polarization reversal.The mechanism of sliding ferroelectricity existent in van der Waals crystals is quite distinct from the conventional ferroelectric switching mechanisms mediated by ion displacement.It creates new possibilities for the design of two-dimensional(2D)ferroelectrics since it can be achieved even in non-polar systems.Before 2D ferroelectrics can be widely employed for practical implementations,however,there is still significant work to be done on several fronts,such as exploring ferroelectricity possibly in more potential 2D systems.Here,we report the experimental observation of room-temperature robust vertical ferroelectricity in layered semiconducting rhenium diselenide(ReSe_(2)),a representative member of the transition metal dichalcogenides material family,based on a combined research of nanoscale piezoresponse and second harmonic generation measurements.While no such ferroelectric behavior was seen in 1L ReSe_(2),2L ReSe_(2)exhibits vertical ferroelectricity at ambient environment.Based on density-functional theory calculations,we deduce that the microscopic origin of ferroelectricity for ReSe_(2)is uncompensated vertical charge transfer that is dependent on in-plane translation and switchable upon interlayer sliding.Our findings have important ramifications for the ongoing development of sliding ferroelectricity since the semiconducting properties and low switching barrier of ReSe2 open up the fascinating potential for functional nanoelectronics applications.展开更多
The controllable construction of non-noble metal based bifunctional catalysts with high activities towards oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of great significance,but remains a challen...The controllable construction of non-noble metal based bifunctional catalysts with high activities towards oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of great significance,but remains a challenge.Herein,we reported an effective method to synthesize cobalt-nitrogen doped mesoporous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content(Co-N-P_(X)-MC,X=0.5,1.0,1.5,2.0).The mesoporous carbon substrate endowed the asprepared samples with more exposed active surface(236.50 m^(2)·g^(−1))and the most appropriate doping ratio of phosphorus had been investigated to be 1.5(Co-N-P1.5-MC).For ORR,Co-N-P1.5-MC exhibited excellent catalytic activity with more positive onset potential(1.01 V)and half-wave potential(0.84 V)than the other samples.For OER,Co-N-P1.5-MC also showed a low overpotential of 415 mV.Combining experimental results and density-functional theory(DFT)calculations,the outstanding bifunctional catalytic performance of Co-N-P1.5-MC was due to the synergistic cooperation between the P and N dopants,which could reduce the reaction barriers and was favorable for ORR and OER.Moreover,the Zn-air battery using Co-N-P1.5-MC as the cathode showed remarkable battery performance with high stability(could operate stably for over 160 h at 10 mA·cm^(−2))and maximum power density(119 mW·cm^(−2)),demonstrating its potential for practical applications.This work could provide significant enlightenment towards the design and construction of bifunctional oxygen electrocatalyst for next-generation electrochemical devices.展开更多
Spin-lattice (SL) coupling plays an important role in spintronic applications given its effects on magnetic,ferroelectric,optical,and thermodynamic properties.Experiments and theoretical calculations have revealed a l...Spin-lattice (SL) coupling plays an important role in spintronic applications given its effects on magnetic,ferroelectric,optical,and thermodynamic properties.Experiments and theoretical calculations have revealed a large SL coupling effect in CrGeTe_(3) and CrI_(3) monolayers.However,the microscopic origin of SL coupling in these systems is still unclear.In this work,we develop a systematic method to explore the atomistic mechanism of SL coupling based on the density functional theory.We find that the first-and second-order SL couplings in ternary system CrGeTe_(3) are considerably stronger than those in binary system CrI_(3).For the first-order SL coupling,the Cr ions of the magnetic pair and Ge ions positively contribute to the strain enhancement of ferromagnetism in CrGeTe_(3).However,the Cr ions provide a negative contribution in CrI_(3).Furthermore,our tight-binding analysis suggests that the p-d hopping in CrGeTe_(3) gradually decreases with the tensile strain,rapidly enhancing the ferromagnetism under the tensile strain.The large frequency shifts in CrGeTe_(3) are caused by the large second-order exchange derivatives (one type of second-order SL coupling) of the Cr ions of the magnetic pair.展开更多
基金financially supported by the National Natural Science Foundation of China(22378204,22008121,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(T2125004)+1 种基金the Funding of NJUST(No.TSXK2022D002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0454)。
文摘The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.
基金supported by the National Natural Science Foundation of China (NSFC) (52171206, 51762013)the Key Project of Hebei Natural Science Foundation (E20202201030)+5 种基金the BeijingTianjin-Hebei Collaborative Innovation Community Construction Project (21344301D)The Second Batch of Young Talent of Hebei Province (70280016160250, 70280011808)the Key Fund in Hebei Province Department of Education China (ZD2021014)The Central Government Guide Local Funding Projects for Scientific and Technological Development (216Z4404G, 206Z4402G)the Interdisciplinary Research Program of Natural Science of Hebei University (DXK202107)the China Postdoctoral Science Foundation (No. 2021M701718)。
文摘The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes(FeNi-Nd_(2)O_(3)/NCN) are designed for highly effective overall water splitting via a facile two-step hydrothermal approach.The synthetic FeNi-Nd_(2)O_(3) hetero-trimers(Fe 2p-Ni 2p-Nd 3d orbital coupling)on NCN achieve excellent oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) activities with overpotentials of 270 and 120 mV at 10 mA cm^(-2) in 1 M KOH solution.Moreover,a small voltage of 1.52 V at 10 mA cm^(-2) is achieved when FeNi-Nd_(2)O_(3)/NCN is assessed as bifunctional catalyst for overall water splitting,which is superior to the typically integrated Pt/C and RuO_(2) counterparts(1.54 V at 10 mA cm^(-2)).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy show that the remarkably improved activity is originated from Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction.Furthermore,density functional theory(DFT) calculations indicate that the lattice contraction reduces binding energies of intermediates by downshifting the position of FeNi bimetallic d-band center relative to the Fermi level to optimize catalytic performance.Therefore,the Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction may provide a new perspective for designing and synthesizing innovative catalytic systems.
基金This work was supported by the National Natural Science Foundation of China(No.11774173),the Fun-damental Research Funds for the Central Universities(No.30915011203),and New Century Excellent Talents in University(NCET-12-0628).We also acknowledge the support from the Shanghai Supercomputer Centre and Tianjin Supercomputer Centre.
文摘Boron nitrogen(BN)monolayer has attracted considerable attention because of their suc-cessful incorporation with graphene based nanodevices.However,many important aspects of the growth mechanisms are still not well explored.Using density functional theory(DFT)calculations,we found that Cu(111)surface is more suitable to be used as a substrate to grow BN monolayer compared with Ni(111)surface.Moreover,we explored that one-dimensional(1D)BN chain configuration is dominant to the two-dimensional(2D)BN ring formation from one pair to five BN pairs deposited on Cu(111)surface.Energetically stable structure transformation of BN monolayer from 1D BN chain to 2D BN ring occurs when the number of pairs is n>5.It is suggested that,as the number of BN pairs increases the energetically stable structures achieve.
基金supported by the National Natural Science Foundation of China(No.11604146,No.51522206,and No.11774173)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,Outstanding Youth Fund of Nanjing Forestry University(NLJQ2015-03)+1 种基金the Fundamental Research Funds for the Central Universities(No.30915011203)the support from the Shanghai Supercomputer Centre
文摘Although bulk SnP3 has been fabricated by experiments in the 1970’s,its electronic and optical properties within several layers have not been reported.Here,based on first-principles calculations,we have predicted two-dimensional SnP3 layers as new semiconducting materials that possess indirect band gaps of 0.71 eV(monolayer)and 1.03 eV(bilayer),which are different from the metallic character of bulk structure.Remarkably,2D SnP3 possesses high hole mobility of 9.17×10^4cm^2·V^-1s^-1 and high light absorption(~10^6 cm^-1)in the whole visible spectrum,which predicts 2D SnP3 layers as prospective candidates for nanoelectronics and photovoltaics.Interestingly,we found that 2D SnP3 bilayer shows similar electronic and optical characters of silicon.
基金supported by the Ministry of Science and Technology of the People’s Republic of China (2022YFA1402901)the National Natural Science Foundation of China (NSFC, T2125004, 12274227, and 12004183)+2 种基金the Fundamental Research Funds for the Central Universities (30921011214)the Funding of Nanjing University of Science & Technology (TSXK2022D002)support from the Tianjing Supercomputer Centre。
基金supported by the National Natural Science Foundation of China(Nos.12304020,21905118,and 22378204)National Science Fund for Distinguished Young Scholars(No.T2125004)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230909)Fundamental Research Funds for the Central Universities(No.30923011013)。
文摘The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks.However,the conventional plasma approach introduces complexities,leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment.In our pursuit of heterostructures with optimized oxygen evolution reaction(OER)behavior,we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni_(3)N-NiO heterostructure(hNiNO).By meticulously controlling the surface heating process during plasma processing,such approach allows for the streamlined fabrication of hNiNO nano-frameworks.The resulting nano-framework exhibits outstanding catalytic performance,as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm^(-2),in an alkaline environment.This stands in stark contrast to the performance of NiO-covered Ni_(3)N fabricated using the conventional plasma method(sNiNO).Operando plasma diagnostics,coupled with numerical simulations,further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni_(3)N-NiO nanostructure,highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.
基金National Natural Science Foundation of China(Nos.22008121,11774173,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(No.T2125004)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.30920032204,30920041115)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K12)Funding of NJUST(No.TSXK2022D002)for financial support.
文摘The efficiency of photocatalytic CO_(2) reduction reaction(PCRR)is restricted by the low solubility and mobility of CO_(2) in water,poor CO_(2) adsorption capacity of catalyst,and competition with hydrogen evolution reaction(HER).Recently,hydrophobic modification of the catalyst surface has been proposed as a potential solution to induce the formation of triple-phase contact points(TPCPs)of CO_(2)(gas phase),H_(2) O(liquid phase),and catalysts(solid phase)near the surface of the catalyst,enabling direct delivery of highly concentrated CO_(2) molecules to the active reaction sites,resulting in higher CO_(2) and lower H+surface concentrations.The TPCPs thus act as the ideal reaction points with enhanced PCRR and suppressed HER.However,the initial synthesis of triple-phase photocatalysts tends to possess a lower bulk density of TPCPs due to the simple structure leading to limited active points and CO_(2) adsorption sites.Here,based on constructing a hydrophobic hierarchical porous TiO_(2)(o-HPT)with interconnected macropores and mesopores structure,we have significantly increased the density of TPCPs in a unit volume of the photocatalyst.Compared with hydrophobic macroporous TiO_(2)(o-MacPT)or mesoporous TiO_(2)(o-MesPT),the o-HPT with increased TPCP density leads to enhanced photoactivity,enabling a high methanol production rate with 1111.5μmol g^(−1) h^(−1) from PCRR.These results emphasize the significance of high-density TPCPs design and propose a potential path for developing efficient PCRR systems.
基金National Key R&D Program of China(No.2021YFB3502500)National Natural Science Foundation of China(Nos.52172091 and 52172295)+3 种基金Natural Science Foundation of Jiangsu Province(No.BK20211199)Scientific Research Fund of AnHui Provincial Education Department(No.KJ2021A0034)Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information Technology(No.56XCA22042).
文摘Magnetic metal absorbers exhibit remarkable microwave absorption capacity.However,their practical application is severely limited due to their susceptibility to corrosion,particularly in marine environ-ments.To address this challenge,we propose a novel approach involving the modification and control of FeCo/rGO microwave absorbers using rare earth lanthanum(La).This strategy aims to achieve both high-performance microwave absorption and enhanced resistance to marine corrosion.In this study,we employ a La_(2)O_(3) modifying control strategy to refine the FeCo magnetic particles and coat them with CoFe2O4 on the surface,leveraging the pinning effect of in situ generated La_(2)O_(3) .This process enhances the interface polarization of the absorbers,thereby improving their electromagnetic performance and ma-rine corrosion resistance.Consequently,the La_(2)O_(3) modified FeCo@rGO composites exhibit broadband ab-sorption,covering a wide frequency range of 6.11 GHz at 1.55 mm.Notably,the electromagnetic proper-ties of the La_(2)O_(3) modified FeCo@rGO absorbers remain stable even after prolonged exposure to a 3.5 wt%NaCI solution,simulating marine conditions,for at least 15 days.Furthermore,we perform first-principle calculations on FeCo and FeCo-O to validate the corrosion resistance of the La_(2)O_(3) modified FeCo@rGO composites at the atomic level.This comprehensive investigation explores the control of rare earth lan-thanum modification on the size of magnetic metal particles,enabling efficient electromagnetic wave absorption and marine corrosion resistance.The results of this study provide a novel and facile strategy for the control of microwave absorbers,offering promising prospects for future research and development in this field.
基金supported by the National Key R&D Program of China(2021YFA1501503)the National Natural Science Foundation of China(T2125004,22008121,22121004)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations(CYZC202107)the Program of Introducing Talents of Discipline to Universities(No.BP0618007)and the Xplorer Prize for financial support.
文摘This review describes recent advances in wettability adjustment to improve the main green energy conversion and storage systems,i.e.,photocatalysis and electrocatalysis.Because both are redox reactions involving electron behavior,they follow a similar pattern in the surface reaction step,which is related to wettability adjustment.Thus,we consider photocatalysis and electrocatalysis together in terms of mass transfer adjustment based on commonalities,aiming to understand the fundamentals more deeply and bring greater mutual inspiration to photocatalysis and electrocatalysis.The theoretical basis is first laid out,and then various strategies are introduced.Subsequently,according to the different requirements of mass transfer,we classify the photocatalytic and electrocatalytic reactions into gas consumption reactions preferring hydrophobic surfaces,and gas evolution reactions preferring hydrophilic surfaces.Pollutant degradation reactions involving different water-soluble substrates are also mentioned.Further,we introduce the specific optimization effect of wettability regulation on the reaction,and the mechanism behind the effect.This comprehensive and insightful review will provide a strategic guide to the reasonable design and development of wettability-optimized photocatalytic and electrocatalytic systems.
基金the National Natural Science Foundation of China(Nos.22008121,11774173,and 51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(No.T2125004)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.30920032204,30920021307,and 30920041115)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K12)the Funding of NJUST(No.TSXK2022D002)for financial support.
文摘Photocatalytic hydrogen generation represents a promising strategy for the establishment of a sustainable and environmentally friendly energy reservoir.However,the current solar-to-hydrogen conversion efficiency is not yet sufficient for practical hydrogen production,highlighting the need for further research and development.Here,we report the synthesis of a Sn-doped TiO_(2)continuous homojunction hollow sphere,achieved through controlled calcination time.The incorporation of a gradient doping profile has been demonstrated to generate a gradient in the band edge energy,facilitating carrier orientation migration.Furthermore,the hollow sphere’s outer and inner sides provide spatially separated reaction sites allowing for the separate acceptance of holes and electrons,which enables the rapid utilization of carriers after separation.As a result,the hollow sphere TiO_(2)with gradient Sn doping exhibits a significantly increased hydrogen production rate of 20.1 mmol·g^(−1)·h^(−1).This study offers a compelling and effective approach to the designing and fabricating highly efficient nanostructured photocatalysts for solar energy conversion applications.
基金supported by the Eational Eatural Science Foundation of China(Nos.12004182 and T2125004)Jiangsu Province Science Foundation(No.BK20200481)the China Postdoctoral Science Foundation(No.2021M691587).
文摘One variety of ferroelectricity that results from lateral relative movements between the adjacent atomic layers is referred to as sliding ferroelectricity,which generates an interfacial charge transfer and hence a polarization reversal.The mechanism of sliding ferroelectricity existent in van der Waals crystals is quite distinct from the conventional ferroelectric switching mechanisms mediated by ion displacement.It creates new possibilities for the design of two-dimensional(2D)ferroelectrics since it can be achieved even in non-polar systems.Before 2D ferroelectrics can be widely employed for practical implementations,however,there is still significant work to be done on several fronts,such as exploring ferroelectricity possibly in more potential 2D systems.Here,we report the experimental observation of room-temperature robust vertical ferroelectricity in layered semiconducting rhenium diselenide(ReSe_(2)),a representative member of the transition metal dichalcogenides material family,based on a combined research of nanoscale piezoresponse and second harmonic generation measurements.While no such ferroelectric behavior was seen in 1L ReSe_(2),2L ReSe_(2)exhibits vertical ferroelectricity at ambient environment.Based on density-functional theory calculations,we deduce that the microscopic origin of ferroelectricity for ReSe_(2)is uncompensated vertical charge transfer that is dependent on in-plane translation and switchable upon interlayer sliding.Our findings have important ramifications for the ongoing development of sliding ferroelectricity since the semiconducting properties and low switching barrier of ReSe2 open up the fascinating potential for functional nanoelectronics applications.
基金supported by the Henan Province Education Department Natural Science Research Item(No.21A480005)the Research Project at School-level of Henan University of Technology(No.2020BS017).
文摘The controllable construction of non-noble metal based bifunctional catalysts with high activities towards oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of great significance,but remains a challenge.Herein,we reported an effective method to synthesize cobalt-nitrogen doped mesoporous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content(Co-N-P_(X)-MC,X=0.5,1.0,1.5,2.0).The mesoporous carbon substrate endowed the asprepared samples with more exposed active surface(236.50 m^(2)·g^(−1))and the most appropriate doping ratio of phosphorus had been investigated to be 1.5(Co-N-P1.5-MC).For ORR,Co-N-P1.5-MC exhibited excellent catalytic activity with more positive onset potential(1.01 V)and half-wave potential(0.84 V)than the other samples.For OER,Co-N-P1.5-MC also showed a low overpotential of 415 mV.Combining experimental results and density-functional theory(DFT)calculations,the outstanding bifunctional catalytic performance of Co-N-P1.5-MC was due to the synergistic cooperation between the P and N dopants,which could reduce the reaction barriers and was favorable for ORR and OER.Moreover,the Zn-air battery using Co-N-P1.5-MC as the cathode showed remarkable battery performance with high stability(could operate stably for over 160 h at 10 mA·cm^(−2))and maximum power density(119 mW·cm^(−2)),demonstrating its potential for practical applications.This work could provide significant enlightenment towards the design and construction of bifunctional oxygen electrocatalyst for next-generation electrochemical devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11825403,and 11804138)the Program for Professor of Special Appointment(Eastern Scholar)+1 种基金supported by Anhui Provincial Natural Science Foundation(Grant No.1908085MA10)the Opening Foundation of State Key Laboratory of Surface Physics Fudan University(Grant No.KF2019_07)。
文摘Spin-lattice (SL) coupling plays an important role in spintronic applications given its effects on magnetic,ferroelectric,optical,and thermodynamic properties.Experiments and theoretical calculations have revealed a large SL coupling effect in CrGeTe_(3) and CrI_(3) monolayers.However,the microscopic origin of SL coupling in these systems is still unclear.In this work,we develop a systematic method to explore the atomistic mechanism of SL coupling based on the density functional theory.We find that the first-and second-order SL couplings in ternary system CrGeTe_(3) are considerably stronger than those in binary system CrI_(3).For the first-order SL coupling,the Cr ions of the magnetic pair and Ge ions positively contribute to the strain enhancement of ferromagnetism in CrGeTe_(3).However,the Cr ions provide a negative contribution in CrI_(3).Furthermore,our tight-binding analysis suggests that the p-d hopping in CrGeTe_(3) gradually decreases with the tensile strain,rapidly enhancing the ferromagnetism under the tensile strain.The large frequency shifts in CrGeTe_(3) are caused by the large second-order exchange derivatives (one type of second-order SL coupling) of the Cr ions of the magnetic pair.