期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Genetic variability predicting breeding potential of upland cotton(Gossypium hirsutum L.)for high temperature tolerance 被引量:1
1
作者 farooq amjad SHAKEEL Amir +5 位作者 SAEED Asif farooq Jehanzeb RIZWAN Muhammad CHATTHA Waqas Shafqat SARWAR Ghulam RAMZAN Yasir 《Journal of Cotton Research》 CAS 2023年第2期81-97,共17页
Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy... Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance. 展开更多
关键词 High temperature Upland cotton Peak flowering HETEROSIS Gene action Combining ability
下载PDF
Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability
2
作者 CHAUDARY Aneeba CHUDHARY Tayba +3 位作者 farooq amjad 张美玲 PATOARY Mohammed Kayes 刘丽芳 《Journal of Donghua University(English Edition)》 CAS 2022年第2期103-109,共7页
Owing to the increasing energy demands and the environmental constraints,the need for bio-based materials has been on the rise due to their variety of favorable properties like biocompatibility,cost-effectiveness,larg... Owing to the increasing energy demands and the environmental constraints,the need for bio-based materials has been on the rise due to their variety of favorable properties like biocompatibility,cost-effectiveness,large specific surface area,high porosity,and non-toxicity.Thermal stability and mechanical strength of aerogels are highly dependent on their micro-porous structures.A three-dimensional structure based on cellulose nanofiber/chitosan(CNF/CS)aerogels was built using two different freezing methodologies,namely random freezing,and unidirectional freezing techniques,by changing mold shapes.The unidirectional aerogels ultimately resulted in high-temperature stability and mechanical strength.The results show that the unidirectional CNF/CS(u-CNF/CS)aerogels contain controlled micro porous orientation relative to random-CNF/CS(r-CNF/CS)aerogels with the disordered porous distribution.The high-temperature stability with an increase of glass transition temperature T_(g) from 275℃(CNF)to 283℃(CNF/CS),the ultra-low thermal conductivity of 0.030 W/(m·K),and mechanical robustness of u-CNF/CS aerogels make them quite favorable for practical applications. 展开更多
关键词 AEROGEL cellulose nanofiber(CNF) chitosan(CS) thermal stability mechanical robustness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部