Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mi...Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mine of China was investigated by combining field investigation, meteorological and hydrological survey with numerical simulation to understand its triggering mechanism and dynamic process. The field data shows that the short-term high-intensity rainfall is the most direct inducement to trigger water-rock flow in the waste dump. The loose shallow gravel soil and the V-shaped valley with a certain slope provide the necessary conditions of the occurrence of water-rock flow in the waste dump. Moreover, the possibility criterion of water-rock flow is presented by analyzing the historical rainfall data. In addition, the smoothed particle hydrodynamics(SPH) method was employed to simulate the waterrock flow under the conditions of Newtonian fluid with uniform distribution of water and coarse-grained materials. The simulating results show that the flow distance, velocity, shape, and deposition profile of water-rock flow are in good agreement with the field observation. The present work is beneficial to the risk assessment and mitigation design of water-rock flow disaster in the waste dump.展开更多
The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a rel...The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a relatively steeper slope angle of 47° instead of 30° was successfully implemented at the west wall in the geological section 73200 of the mine area, where the 3D effect of the nonlinear large deformation of the slope was taken into account. Based on the above research conclusion, put forward the countermeasures of shortening mining length, excavating by different regions, timely foot backfilling to protect the excavated slope, and monitoring and feedback adjustment by studying the nonlinear effect. The results show that these countermeasures are effective in controlling maximum deformation and increasing the stability of the slope.展开更多
基金funded by the Fundamental Research Funds for the Central Universities,SCUT (No.2015QB02)the Special Fund for Yueqi Scholars (No.800015Z1207)。
文摘Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mine of China was investigated by combining field investigation, meteorological and hydrological survey with numerical simulation to understand its triggering mechanism and dynamic process. The field data shows that the short-term high-intensity rainfall is the most direct inducement to trigger water-rock flow in the waste dump. The loose shallow gravel soil and the V-shaped valley with a certain slope provide the necessary conditions of the occurrence of water-rock flow in the waste dump. Moreover, the possibility criterion of water-rock flow is presented by analyzing the historical rainfall data. In addition, the smoothed particle hydrodynamics(SPH) method was employed to simulate the waterrock flow under the conditions of Newtonian fluid with uniform distribution of water and coarse-grained materials. The simulating results show that the flow distance, velocity, shape, and deposition profile of water-rock flow are in good agreement with the field observation. The present work is beneficial to the risk assessment and mitigation design of water-rock flow disaster in the waste dump.
基金Supported by the National Natural Science Foundation of China(10572008)the Natural Science Foundation of Beijing(3063019)Doctor Foundation of Yanshan University(B245)
文摘The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a relatively steeper slope angle of 47° instead of 30° was successfully implemented at the west wall in the geological section 73200 of the mine area, where the 3D effect of the nonlinear large deformation of the slope was taken into account. Based on the above research conclusion, put forward the countermeasures of shortening mining length, excavating by different regions, timely foot backfilling to protect the excavated slope, and monitoring and feedback adjustment by studying the nonlinear effect. The results show that these countermeasures are effective in controlling maximum deformation and increasing the stability of the slope.