文章以氧化石墨烯(GO)与苯胺单体为原料,按照GO与苯胺不同的质量比原位合成GO/聚苯胺(PANI)复合材料,经冷冻干燥后再进行热处理。将得到的样品制作成超级电容器的电极,并通过对电极进行电化学性能测试来优化GO/PANI复合材料的热处理温...文章以氧化石墨烯(GO)与苯胺单体为原料,按照GO与苯胺不同的质量比原位合成GO/聚苯胺(PANI)复合材料,经冷冻干燥后再进行热处理。将得到的样品制作成超级电容器的电极,并通过对电极进行电化学性能测试来优化GO/PANI复合材料的热处理温度和质量比,以提升其比电容。通过扫描电子显微镜(scanning electron microscope,SEM)观察GO/PANI复合材料的表面形貌,与电化学性能进行对比,以此优化实验条件,为下一步实验提供参考。展开更多
Si-based nanomaterials are some new photo-elctronic and informational materials developed rapidly in recent years, and they have potential applications in the light emitting devices, e.g. Si light emitting diode, Si l...Si-based nanomaterials are some new photo-elctronic and informational materials developed rapidly in recent years, and they have potential applications in the light emitting devices, e.g. Si light emitting diode, Si laser and integrated Si-based photoelectronics. Among them are nano-scale porous silicon (ps), Si nanocrystalline embedded SiO2 (SiOx, x 【 2.0) matrices, Si nanoquantum dot and Si/SiO2 superlattice, etc. At present, there are various indications that if these materials can achieve efficient and stable luminescence, which are photoluminescence (PL) and electroluminescence (EL), it is possible for them to lead to a new informational revolution in the early days of the 21st century. In this article, we will mainly review the progress of study on Si-based nanomaterials in the past ten years. The involved contents are the fabricated methods, structural characterizations and light emitting properties. Finally, we predicate the developed tendency of this field in the following ten years.展开更多
A method to improve the efficiency of organic photovoltaic cells through inclusion of an ultrathin modification layer of Al2O3 or LiF sandwiched between poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid(PEDOT...A method to improve the efficiency of organic photovoltaic cells through inclusion of an ultrathin modification layer of Al2O3 or LiF sandwiched between poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid(PEDOT:PSS) and indium tin oxide layers is developed.Because of the strong dipole moments of LiF and Al2O3,either can enhance the built-in electric field,which increases the probability of the carriers reaching the corresponding electrode.In addition,the low work function of PEDOT:PSS can decrease the energy barrier for carrier transmission.A 21.7% improvement in the power conversion efficiency of experimental devices was achieved,mainly because the short circuit current was enhanced by almost 30%.展开更多
Alternating multilayer films of hydrogen diluted hydrogenated protocrystalline silicon (pc-Si:H) were prepared using a plasma-enhanced chemical vapor deposition technique.The microstructure of the deposited films and ...Alternating multilayer films of hydrogen diluted hydrogenated protocrystalline silicon (pc-Si:H) were prepared using a plasma-enhanced chemical vapor deposition technique.The microstructure of the deposited films and photoresponse characteristics of their Schottky diode structures were investigated by Raman scattering spectroscopy,Fourier transform infrared spectroscopy and photocurrent spectra.Microstructure and optical absorption analyses suggest that the prepared films were pc-Si:H multilayer films with a two-phase structure of silicon nanocrystals (NCs) and its amorphous counterpart and the band gap of the films showed a decreasing trend with increasing crystalline fraction.Photocurrent measurement revealed that silicon NCs facilitate the spatial separation of photo-generated carriers,effectively reduce the non-radiative recombination rate,and induce a photoresponse peak value shift towards the short-wavelength side with increasing crystallinity.However,the carrier traps near the surface defects of silicon NCs and their spatial carrier confinement result in a significant reduction of the diode photoresponse in the longwavelength region.An enhancement of the photoresponse from 350 to 1000 nm was observed when applying an increased bias voltage in the diode,showing a favorable carrier transport and an effective collection of photo-generated carriers was achieved.Both the spatial separation of the restricted electron-hole pairs in silicon NCs and the de-trapping of the carriers at their interface defects are responsible for the red-shift in photoresponse spectra and enhancement of external quantum efficiency.The results provide fundamental data for the carrier transport control of high-efficiency pc-Si:H solar cells.展开更多
The fluorescence spectra of three different dyes adsorbed on the tabular and cubic AgBr microcrystals are obtained by the picosecond time-resolved streak camera technique. The dependence of the ultrafast electron tran...The fluorescence spectra of three different dyes adsorbed on the tabular and cubic AgBr microcrystals are obtained by the picosecond time-resolved streak camera technique. The dependence of the ultrafast electron transferring from dye-aggre-gates to the conduction band of AgBr and the efficiency of spectral sensitization on different kinds of dyes with different concentrations is analyzed. Further more,the microcosmic mechanism of the sensitization process is discussed. It is found that the fluorescence decay curves are fitted very well by the double exponential func-tion,consisting of a slow component and a fast one with large amplitude. We con-sider this fast one mainly attributable to the electron transfer from dye J-aggre-gates to the conduction band of AgBr.展开更多
High temperature electrical and thermal transport properties,that is,electrical conductivity,Seebeck coefficient and thermal conductivity,of CdO ceramics have been investigated.Because of the good electrical propertie...High temperature electrical and thermal transport properties,that is,electrical conductivity,Seebeck coefficient and thermal conductivity,of CdO ceramics have been investigated.Because of the good electrical properties and low thermal conductivity,the dimensionless figure-of-merit ZT of the CdO ceramics reaches 0.34 at 1023 K.This value is comparable to the best reported ZT for the n-type oxide ceramic thermoelectric materials and remains as potential to be further improved by porosity controlling or nanostructuring.展开更多
Ca3Co409/Nb-SrTiO3 heterojunction with good rectifying behavior at room temperature was fabricated by growing a layer of Ca3Co409 film on the lwt% Nb-doped SrTiO3 substrate by means of the chemical solution deposition...Ca3Co409/Nb-SrTiO3 heterojunction with good rectifying behavior at room temperature was fabricated by growing a layer of Ca3Co409 film on the lwt% Nb-doped SrTiO3 substrate by means of the chemical solution deposition technique. A large open-circuit voltage signal with the response time of tens of nanosecond was observed at room temperature when the Ca3Co409 layer of the heterojunction was illuminated under the 308 nm irradiation and no voltage signal was detected under the 10.6 gun irradiation. A mechanism based on the photovoltaic effect of a p-n junction was proposed to explain the experimental results. The present work shows a great potential of this new heterojunction as photoelectric devices.展开更多
文摘文章以氧化石墨烯(GO)与苯胺单体为原料,按照GO与苯胺不同的质量比原位合成GO/聚苯胺(PANI)复合材料,经冷冻干燥后再进行热处理。将得到的样品制作成超级电容器的电极,并通过对电极进行电化学性能测试来优化GO/PANI复合材料的热处理温度和质量比,以提升其比电容。通过扫描电子显微镜(scanning electron microscope,SEM)观察GO/PANI复合材料的表面形貌,与电化学性能进行对比,以此优化实验条件,为下一步实验提供参考。
文摘Si-based nanomaterials are some new photo-elctronic and informational materials developed rapidly in recent years, and they have potential applications in the light emitting devices, e.g. Si light emitting diode, Si laser and integrated Si-based photoelectronics. Among them are nano-scale porous silicon (ps), Si nanocrystalline embedded SiO2 (SiOx, x 【 2.0) matrices, Si nanoquantum dot and Si/SiO2 superlattice, etc. At present, there are various indications that if these materials can achieve efficient and stable luminescence, which are photoluminescence (PL) and electroluminescence (EL), it is possible for them to lead to a new informational revolution in the early days of the 21st century. In this article, we will mainly review the progress of study on Si-based nanomaterials in the past ten years. The involved contents are the fabricated methods, structural characterizations and light emitting properties. Finally, we predicate the developed tendency of this field in the following ten years.
基金supported by the Natural Science Foundation of Hebei Province (F20010000306)the Science Research Program of Hebei Education Department of China
文摘A method to improve the efficiency of organic photovoltaic cells through inclusion of an ultrathin modification layer of Al2O3 or LiF sandwiched between poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid(PEDOT:PSS) and indium tin oxide layers is developed.Because of the strong dipole moments of LiF and Al2O3,either can enhance the built-in electric field,which increases the probability of the carriers reaching the corresponding electrode.In addition,the low work function of PEDOT:PSS can decrease the energy barrier for carrier transmission.A 21.7% improvement in the power conversion efficiency of experimental devices was achieved,mainly because the short circuit current was enhanced by almost 30%.
基金supported by the National Natural Science Foundation of China(60878040 and 60940020)
文摘Alternating multilayer films of hydrogen diluted hydrogenated protocrystalline silicon (pc-Si:H) were prepared using a plasma-enhanced chemical vapor deposition technique.The microstructure of the deposited films and photoresponse characteristics of their Schottky diode structures were investigated by Raman scattering spectroscopy,Fourier transform infrared spectroscopy and photocurrent spectra.Microstructure and optical absorption analyses suggest that the prepared films were pc-Si:H multilayer films with a two-phase structure of silicon nanocrystals (NCs) and its amorphous counterpart and the band gap of the films showed a decreasing trend with increasing crystalline fraction.Photocurrent measurement revealed that silicon NCs facilitate the spatial separation of photo-generated carriers,effectively reduce the non-radiative recombination rate,and induce a photoresponse peak value shift towards the short-wavelength side with increasing crystallinity.However,the carrier traps near the surface defects of silicon NCs and their spatial carrier confinement result in a significant reduction of the diode photoresponse in the longwavelength region.An enhancement of the photoresponse from 350 to 1000 nm was observed when applying an increased bias voltage in the diode,showing a favorable carrier transport and an effective collection of photo-generated carriers was achieved.Both the spatial separation of the restricted electron-hole pairs in silicon NCs and the de-trapping of the carriers at their interface defects are responsible for the red-shift in photoresponse spectra and enhancement of external quantum efficiency.The results provide fundamental data for the carrier transport control of high-efficiency pc-Si:H solar cells.
基金the National Natural Science Foundation of China (Grant No. 60478033)the Doctoral Foundation of Hebei Province of China (Grant No. B2003119)the Science and Technology Project of Hebei Province of China (Grant No. 05215102)
文摘The fluorescence spectra of three different dyes adsorbed on the tabular and cubic AgBr microcrystals are obtained by the picosecond time-resolved streak camera technique. The dependence of the ultrafast electron transferring from dye-aggre-gates to the conduction band of AgBr and the efficiency of spectral sensitization on different kinds of dyes with different concentrations is analyzed. Further more,the microcosmic mechanism of the sensitization process is discussed. It is found that the fluorescence decay curves are fitted very well by the double exponential func-tion,consisting of a slow component and a fast one with large amplitude. We con-sider this fast one mainly attributable to the electron transfer from dye J-aggre-gates to the conduction band of AgBr.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Hebei Province(Grant No.A2013201249)the National Natural Science Foundation of China(Grant No.51372064)
文摘High temperature electrical and thermal transport properties,that is,electrical conductivity,Seebeck coefficient and thermal conductivity,of CdO ceramics have been investigated.Because of the good electrical properties and low thermal conductivity,the dimensionless figure-of-merit ZT of the CdO ceramics reaches 0.34 at 1023 K.This value is comparable to the best reported ZT for the n-type oxide ceramic thermoelectric materials and remains as potential to be further improved by porosity controlling or nanostructuring.
基金supported by the National Natural Science Foundation of China (Grant No.10904030)the Key Project of Hebei Education Department (Grant No.ZD200909)
文摘Ca3Co409/Nb-SrTiO3 heterojunction with good rectifying behavior at room temperature was fabricated by growing a layer of Ca3Co409 film on the lwt% Nb-doped SrTiO3 substrate by means of the chemical solution deposition technique. A large open-circuit voltage signal with the response time of tens of nanosecond was observed at room temperature when the Ca3Co409 layer of the heterojunction was illuminated under the 308 nm irradiation and no voltage signal was detected under the 10.6 gun irradiation. A mechanism based on the photovoltaic effect of a p-n junction was proposed to explain the experimental results. The present work shows a great potential of this new heterojunction as photoelectric devices.