This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm ob...This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm observes n×n neighborhoods of the point in all directions, and then incorporates the peripheral fea- tures using the Mel frequency cepstrum components (MFCCs)-based feature extractor of the Tsinghua elec- tronic engineering speech processing (THEESP) for Mandarin automatic speech recognition (MASR) sys- tem as replacements of the dynamic features with different feature combinations. In this algorithm, the or- thogonal bases are extracted directly from the speech data using discrite cosime transformation (DCT) with 3×3 blocks on an NL-TS pattern as the peripheral features. The new primal bases are then selected and simplified in the form of the ?dp- operator in the time direction and the ?dp- operator in the frequency di- t f rection. The algorithm has 23.29% improvements of the relative error rate in comparison with the standard MFCC feature-set and the dynamic features in tests using THEESP with the duration distribution-based hid- den Markov model (DDBHMM) based on MASR system.展开更多
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 200/AA/14)
文摘This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm observes n×n neighborhoods of the point in all directions, and then incorporates the peripheral fea- tures using the Mel frequency cepstrum components (MFCCs)-based feature extractor of the Tsinghua elec- tronic engineering speech processing (THEESP) for Mandarin automatic speech recognition (MASR) sys- tem as replacements of the dynamic features with different feature combinations. In this algorithm, the or- thogonal bases are extracted directly from the speech data using discrite cosime transformation (DCT) with 3×3 blocks on an NL-TS pattern as the peripheral features. The new primal bases are then selected and simplified in the form of the ?dp- operator in the time direction and the ?dp- operator in the frequency di- t f rection. The algorithm has 23.29% improvements of the relative error rate in comparison with the standard MFCC feature-set and the dynamic features in tests using THEESP with the duration distribution-based hid- den Markov model (DDBHMM) based on MASR system.