In recent years, the progress of NAFLD has become an important health problem, and the prevention or delay of progress in NAFLD is a major key point. Whether or not to combine T2MD, people are interested in the mechan...In recent years, the progress of NAFLD has become an important health problem, and the prevention or delay of progress in NAFLD is a major key point. Whether or not to combine T2MD, people are interested in the mechanisms and efficacy of SGLT2i for NAFLD. In this review, we summarized the current clinical research on SGLT2i for the combination of T2MD’s NAFLD patients, and the latest evidence of external or animal experiments. These evidences will help us to more accurately understand the protective effects of SGLT2i in NAFLD. Lifestyle changes are still essential to prevent and treat NAFLD, and for all kinds of drugs that treat NAFLD in clinical trials, SGLT2i may be one of the promising treatments.展开更多
酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number...酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number prediction network using hierarchical features and global features,ECPN-HFGF)。该方法首先通过残差网络提取蛋白质序列通用特征,并通过层级特征提取模块和全局特征提取模块进一步提取蛋白质序列的层级特征和全局特征,之后结合两种特征信息的预测结果,采用多任务学习框架,实现酶EC编号的精确预测。计算实验结果表明,ECPN-HFGF方法在蛋白质序列EC编号预测任务上性能最佳,宏观F1值和微观F1值分别达到95.5%和99.0%。ECPN-HFGF方法能有效结合蛋白质序列的层级特征和全局特征,快速准确预测蛋白质序列EC编号,比当前常用方法预测精确度更高,能够为酶学研究和酶工程应用的发展提供一种高效的思路和方法。展开更多
The albumin-bilirubin(ALBI)score,which was proposed to assess the prognosis of patients with hepatocellular carcinoma,has gradually been extended to other liver diseases in recent years,including primary biliary chola...The albumin-bilirubin(ALBI)score,which was proposed to assess the prognosis of patients with hepatocellular carcinoma,has gradually been extended to other liver diseases in recent years,including primary biliary cholangitis,liver cirrhosis,hepatitis,liver transplantation,and liver injury.The ALBI score is often compared with classical scores such as the Child-Pugh and model for end-stage liver disease scores or other noninvasive prediction models.It is widely employed because of its immunity to subjective evaluation indicators and ease of obtaining detection indicators.An increasing number of studies have confirmed that it is highly accurate for assessing the prognosis of patients with chronic liver disease;additionally,it has demonstrated good predictive performance for outcomes beyond survival in patients with liver diseases,such as decompensation events.This article presents a review of the application of ALBI scores in various non-malignant liver diseases.展开更多
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee...Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.展开更多
The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to...The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.展开更多
BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflamm...BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.展开更多
Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generate...Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.展开更多
在生物系统中,由驱动蛋白和丝蛋白构成的消耗能量的活性网络可以产生驱动力并作用于多种生物过程,包括细胞运动、形状变化和复制等。这种活性网络的功能不可或缺,然而,分子尺度蛋白的相互作用如何能够使力在微米尺度上进行组织和传递仍...在生物系统中,由驱动蛋白和丝蛋白构成的消耗能量的活性网络可以产生驱动力并作用于多种生物过程,包括细胞运动、形状变化和复制等。这种活性网络的功能不可或缺,然而,分子尺度蛋白的相互作用如何能够使力在微米尺度上进行组织和传递仍然难以捉摸。本研究证明了微管的捆绑(增长)可以使活性物质系统在“全局力传递”相和“局部力耗散”相间相互转化。平均微管长度增加5倍会导致局部相到全局相的转变。转变后,力传播的长度尺度增加100倍并且力的大小增加了20倍。全局相下活性物质系统可产生(10 p N)力场,使包括细胞运输和液滴运动等应用成为可能。通过理论和模拟证明,即使存在少数长微管也可以诱导局部和全局相之间的逾渗转变,为细胞中的力传递提供调节机制。本研究结果揭示了细胞中力传导机制,并使活性材料应用于合成生物学和软机器人成为可能。展开更多
Objective:This study aimed to provide a comprehensive overview of the global burden of esophageal cancer(EC)and determine the temporal trends and factors influencing changes in the global burden.Methods:The latest inc...Objective:This study aimed to provide a comprehensive overview of the global burden of esophageal cancer(EC)and determine the temporal trends and factors influencing changes in the global burden.Methods:The latest incidence and mortality data for EC worldwide were obtained from GLOBALCAN 2022.The mortality and disability-adjusted life years(DALYs)rates for EC from 1990±2019 were sourced from the 2019 Global Burden of Diseases.Trends in EC mortality and DALYs attributable to 11 risk factors or clusters of risk were analyzed using the joinpoint regression model.The trends in age-related EC burden were assessed using a decomposition approach.Results:An estimated 511,054 new cases of EC were diagnosed in 2022 with 445,391 deaths worldwide.Approximately 75%of cases and deaths occurred in Asia.Nearly 50%of global EC deaths and DALYs were attributed to tobacco use in men in 2019,while 20%were attributed to high body mass index(BMI)in women.From 1990±2019,EC deaths and DALYs attributable to almost all risk factors had declining trends,while EC deaths and DALYs attributed to high BMI in men had upward trends.The age-related EC burden exhibited an upward trend driven by population growth and aging,which contributed to 307.4 thousand deaths and 7.2 million DALYs due to EC.Conclusions:The EC burden remains substantial worldwide.Effective tobacco and obesity control measures are critical for addressing the risk-attributable burden of EC.Population growth and aging pose challenges for EC prevention and control efforts.展开更多
Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The s...Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil properties contributing to the divergence of methanotrophs community structure,and changes in soil properties due to soil development time are important factors driving differences in methanotrophs communities in Wudalianchi volcanic soils.展开更多
文摘In recent years, the progress of NAFLD has become an important health problem, and the prevention or delay of progress in NAFLD is a major key point. Whether or not to combine T2MD, people are interested in the mechanisms and efficacy of SGLT2i for NAFLD. In this review, we summarized the current clinical research on SGLT2i for the combination of T2MD’s NAFLD patients, and the latest evidence of external or animal experiments. These evidences will help us to more accurately understand the protective effects of SGLT2i in NAFLD. Lifestyle changes are still essential to prevent and treat NAFLD, and for all kinds of drugs that treat NAFLD in clinical trials, SGLT2i may be one of the promising treatments.
文摘酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number prediction network using hierarchical features and global features,ECPN-HFGF)。该方法首先通过残差网络提取蛋白质序列通用特征,并通过层级特征提取模块和全局特征提取模块进一步提取蛋白质序列的层级特征和全局特征,之后结合两种特征信息的预测结果,采用多任务学习框架,实现酶EC编号的精确预测。计算实验结果表明,ECPN-HFGF方法在蛋白质序列EC编号预测任务上性能最佳,宏观F1值和微观F1值分别达到95.5%和99.0%。ECPN-HFGF方法能有效结合蛋白质序列的层级特征和全局特征,快速准确预测蛋白质序列EC编号,比当前常用方法预测精确度更高,能够为酶学研究和酶工程应用的发展提供一种高效的思路和方法。
基金the supports of the National Natural Science Foundation of China (No. 51901153)Natural Science Foundation of Shanxi Province,China (No. 201901D211096)。
文摘The albumin-bilirubin(ALBI)score,which was proposed to assess the prognosis of patients with hepatocellular carcinoma,has gradually been extended to other liver diseases in recent years,including primary biliary cholangitis,liver cirrhosis,hepatitis,liver transplantation,and liver injury.The ALBI score is often compared with classical scores such as the Child-Pugh and model for end-stage liver disease scores or other noninvasive prediction models.It is widely employed because of its immunity to subjective evaluation indicators and ease of obtaining detection indicators.An increasing number of studies have confirmed that it is highly accurate for assessing the prognosis of patients with chronic liver disease;additionally,it has demonstrated good predictive performance for outcomes beyond survival in patients with liver diseases,such as decompensation events.This article presents a review of the application of ALBI scores in various non-malignant liver diseases.
基金the National Natural Science Foundation of China(No.51973080,92066104).
文摘Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.
基金funded by the National Natural Science Foundation of China(No.U22B6002)the“14th Five-Year”Forward-looking Basic Science and Technology Project of China National Petroleum Company Limited(No.2022DJ2107).
文摘The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.
基金Project of the National Natural Science Foundation of China,No.82172398Key Research Project of the Department of Education of Liaoning Province,No.LJKZZ20220148+1 种基金Dalian Medical Science Research Project,No.2111038Dalian Dengfeng Plan Medical Key Specialty Construction Project(2021),No.243.
文摘BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.
基金jointly supported by the National Natural Science Foundation of China(4220207742103025)+5 种基金the Opening Foundation of MNR Key Laboratory of Metallogeny and Mineral Assessment(ZS2209ZS2106)the Opening Foundation of Key Laboratory of Mineral Resources in Western China(Gansu Province)(MRWCGS-2021-01)the Natural Science Foundation of Gansu Province(22JR5RA440)the Fundamental Research Funds for the Central Universities(LZUJBKY-2022-42)the Guiding Special Funds of“Double First-Class(First-Class University&First-Class Disciplines)”(561119201)of Lanzhou University,China。
文摘Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.
文摘在生物系统中,由驱动蛋白和丝蛋白构成的消耗能量的活性网络可以产生驱动力并作用于多种生物过程,包括细胞运动、形状变化和复制等。这种活性网络的功能不可或缺,然而,分子尺度蛋白的相互作用如何能够使力在微米尺度上进行组织和传递仍然难以捉摸。本研究证明了微管的捆绑(增长)可以使活性物质系统在“全局力传递”相和“局部力耗散”相间相互转化。平均微管长度增加5倍会导致局部相到全局相的转变。转变后,力传播的长度尺度增加100倍并且力的大小增加了20倍。全局相下活性物质系统可产生(10 p N)力场,使包括细胞运输和液滴运动等应用成为可能。通过理论和模拟证明,即使存在少数长微管也可以诱导局部和全局相之间的逾渗转变,为细胞中的力传递提供调节机制。本研究结果揭示了细胞中力传导机制,并使活性材料应用于合成生物学和软机器人成为可能。
基金funded by the National Natural Science Foundation of China (Grant No. 82273721)Capital’s Funds for Health Improvement and Research (Grant No. 2024-1G-4023)。
文摘Objective:This study aimed to provide a comprehensive overview of the global burden of esophageal cancer(EC)and determine the temporal trends and factors influencing changes in the global burden.Methods:The latest incidence and mortality data for EC worldwide were obtained from GLOBALCAN 2022.The mortality and disability-adjusted life years(DALYs)rates for EC from 1990±2019 were sourced from the 2019 Global Burden of Diseases.Trends in EC mortality and DALYs attributable to 11 risk factors or clusters of risk were analyzed using the joinpoint regression model.The trends in age-related EC burden were assessed using a decomposition approach.Results:An estimated 511,054 new cases of EC were diagnosed in 2022 with 445,391 deaths worldwide.Approximately 75%of cases and deaths occurred in Asia.Nearly 50%of global EC deaths and DALYs were attributed to tobacco use in men in 2019,while 20%were attributed to high body mass index(BMI)in women.From 1990±2019,EC deaths and DALYs attributable to almost all risk factors had declining trends,while EC deaths and DALYs attributed to high BMI in men had upward trends.The age-related EC burden exhibited an upward trend driven by population growth and aging,which contributed to 307.4 thousand deaths and 7.2 million DALYs due to EC.Conclusions:The EC burden remains substantial worldwide.Effective tobacco and obesity control measures are critical for addressing the risk-attributable burden of EC.Population growth and aging pose challenges for EC prevention and control efforts.
基金the Special Projects for the Central Government to guide the development of local science and technology(ZY20B15)the Key Research&Development Program funding project of Heilongjiang Province(GA21C030)the Research Funds of Provincial Research Institutes of Heilongjiang Province(ZNBZ2022ZR07)。
文摘Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil properties contributing to the divergence of methanotrophs community structure,and changes in soil properties due to soil development time are important factors driving differences in methanotrophs communities in Wudalianchi volcanic soils.