期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Efficient energy harvesting from PV Panel with reinforced hydrophilic nano-materials for eco-buildings
1
作者 Ahmed Elnozahy Heba Abd-Elbary farag k.abo-elyousr 《Energy and Built Environment》 2024年第3期393-403,共11页
The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic o... The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic or hy-drophilic materials have recently been introduced to reduce dust deposition on building-integrated PV(BIPV)panels.The hydrophilic Nano-coated material is examined as a solution to decrease the impact of the dust on the BIPV panels and harvest more solar energy.An impartial comparison of the BIPV panels performance under natu-ral dust conditions,manual cleaning,and hydrophilic nanomaterial coating is performed.Through an exhaustive and qualitative experimental analysis,the anti-reflection and anti-static properties of the utilized Nano-coated material are examined.The experimental results show that the hydrophilic Nano-coated material significantly improves the gathered maximum output power by 18%compared to the manually wiped panel.The calculated efficiencies of the Nano-coated,manual cleaning,and dusty panels are 11%,9%,and 6%,respectively,which highlights the futureproofing of the Nano-coated solar panel.Compared to the dusty panels,the ecological and economical results show that the BIPV carbon emissions are desirably dropped by 11%while using Nano-coated PV panels and the payback period is reduced to 3.9 years,which is approximately 12.8%faster. 展开更多
关键词 HYDROPHILIC SELF-CLEANING BIPV panels Nano-coating TECHNO-ECONOMIC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部