The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization s...The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization signals on the frequency domain and the flexibility of frame structure configuration have brought great challenges to the initial cell search for the fifth-generation(5G) new radio(NR). To solve this problem, firstly, we analyze the physical layer frame structure of 5G NR systems. Then, by focusing on the knowledge of synchronization signals, the 5G NR cell search process is designed, and the primary synchronization signal(PSS) timing synchronization algorithm is proposed, including a 5G-based coarse synchronization algorithm and conjugate symmetry-based fine synchronization algorithm. Finally, the performance of the proposed cell search algorithm in 5G NR systems is verified through the combination of Digital Signal Processing(DSP) and personal computer(PC). And the MATLAB simulation proves that the proposed algorithm has better performance than the conventional cross-correlation algorithm when a certain frequency offset exists.展开更多
Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the ...Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.展开更多
基金partially the Chongqing Municipality’s Major Theme Project “R & D and Application of 5G terminal simulation equipment” (Grant No. Cstc2017zdcy-zdzx0030)
文摘The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization signals on the frequency domain and the flexibility of frame structure configuration have brought great challenges to the initial cell search for the fifth-generation(5G) new radio(NR). To solve this problem, firstly, we analyze the physical layer frame structure of 5G NR systems. Then, by focusing on the knowledge of synchronization signals, the 5G NR cell search process is designed, and the primary synchronization signal(PSS) timing synchronization algorithm is proposed, including a 5G-based coarse synchronization algorithm and conjugate symmetry-based fine synchronization algorithm. Finally, the performance of the proposed cell search algorithm in 5G NR systems is verified through the combination of Digital Signal Processing(DSP) and personal computer(PC). And the MATLAB simulation proves that the proposed algorithm has better performance than the conventional cross-correlation algorithm when a certain frequency offset exists.
基金partially supported by the National Natural Science Foundation of China (Grant No. 61701063)Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1600435)
文摘Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.