We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum ...We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum interference device(dc-SQUID).With suitable external magnetic fluxes applied to the dc-SQUID symmetry loops,on-chip tunable interactions between neighboring resonators can be realized,and different perfect W states can be deterministically created on-demand in one step.Numerical simulations show that high-fidelity target states can be generated and our scheme is robust against imperfect parameter tuning and environment-induced decoherence.The present work may have potential applications for implementing quantum computation and quantum information processing based on microwave photons.展开更多
The nonlinear Schrodinger equation equation is one of the most important physical models used in optical fiber theory to explain the transmission of an optical soliton.The field of chiral soliton propagation in nuclea...The nonlinear Schrodinger equation equation is one of the most important physical models used in optical fiber theory to explain the transmission of an optical soliton.The field of chiral soliton propagation in nuclear physics is very interesting because of its numerous applications in communications and ultra-fast signal routing systems.The(1+1)-dimensional chiral dynamical structure that describes the soliton behaviour in data transmission is dealt with in this work using a variety of in-depth analytical techniques.This work has applications in particle physics,ionised science,nuclear physics,optics,and other applied mathematical sciences.We are able to develop a variety of solutions to demonstrate the behaviour of solitary wave structures,periodic soliton solutions,chiral soliton solutions,and bell-shaped soliton solutions with the use of applied techniques.Moreover,in order to verify the scientific calculations,the stability analysis for the observed solutions of the governing model is taken into consideration.In addition,the3-dimensional,contour,and 2-dimensional visuals are supplied for a better understanding of the behaviour of the solutions.The employed strategies are dependable,uncomplicated,and effective;yet have not been utilised with the governing model in the literature that is now accessible.The resulting outcomes have impressive applications across a large number of study areas and computational physics phenomena representing real-world scenarios.The methods applied in this model are not utilized on the given models in previous literature so we can say that these describe the novelty of the work.展开更多
We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy l...We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy levels;such atoms are originally generated in a coherent superposition of two lower levels.The phaseonium system is comprised of three-level atoms with aΛ-type configuration,which are initially prepared in a coherent superposition of two lower levels.To accomplish this spatial modulation based on the susceptibility of phaseonium medium,a standingwave field is used.By looking at how an optical field diffracts at different relative phases,we find that the zeroth and first order diffraction intensities increase as the relative phase changes.We also investigate the impact of the Rabi frequency of the field on diffraction intensity and notice that an increasing strength of the Rabi frequency leads to amplification in the intensity of both central zeroth order and first-order diffraction.Furthermore,it has been observed that a significant rise in diffraction intensity occurs at longer interaction lengths between external fields and the atomic medium.展开更多
We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck(OU) noise. Here we consider two different one-parameter families of qubit-qutrit states ...We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck(OU) noise. Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs. A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters, the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations. In addition, it is observed that the non-Markovian strength(γ/Γ) has a positive impact on the correlations time. For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property. Moreover, its decay can be significantly delayed.展开更多
In this paper, we examine the transmission of a probe field through a one dimensional photonic crystal (1DPC) when the sixth layer of the crystal is doped with four level atoms. We analyze effects of the external driv...In this paper, we examine the transmission of a probe field through a one dimensional photonic crystal (1DPC) when the sixth layer of the crystal is doped with four level atoms. We analyze effects of the external driving field on the passage of weak probe field across the photonic crystal. It is found that for the phase time delay of the probe photons, intensity of the driving field switches the Hartman effect from sub to superluminal character. It is interesting to note that in our model, the superluminal transmission of the probe pulse is accompanied by a negligibly small absorption of the incident beam. It ensures that the probe field does not attenuate while passing through the photonic crystal. A similar switching of the Hartman effect may be obtained by adjusting detuning of the probe field related to the excited states of the four-level doping atoms.展开更多
We study the tunneling time of ultracold V-type atoms interacting a high quality microwave cavity. Here atomic coherence is introduced in the system by a strong driving field which couples the two lower states of the ...We study the tunneling time of ultracold V-type atoms interacting a high quality microwave cavity. Here atomic coherence is introduced in the system by a strong driving field which couples the two lower states of the three-level atom. It is found that in the presence of coherence, mazer action or the scattering like nature of the interaction may be examined for extended energies of the incident cold atoms. Our results show that position and amplitudes of the peak values of the phase time(traversal time) may be very effectively controlled by the coherent driving field. Further, here we obtained superclassical values of the phase time corresponding to much higher values of the transmission amplitudes of the tunneling atoms which may be advantageous in the possible experimental realization of the superclassical tunneling time of the traversing cold atoms. In addition, we examine a mirror reflection type symmetry in the phase time curve for a judicious choice of the external driving field.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12174300)the Natural Science Foundation of Hubei Province of China(Grant No.2020CFB748)+2 种基金the Natural Science Foundation of Shandong Province of China(Grant Nos.ZR2021MA042 and ZR2021MA078)the Program for Science and Technology Innovation Team in Colleges of Hubei Province of China(Grant No.T2021012)the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(Grant Nos.BK202113,BK201906,and BK202008)。
文摘We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum interference device(dc-SQUID).With suitable external magnetic fluxes applied to the dc-SQUID symmetry loops,on-chip tunable interactions between neighboring resonators can be realized,and different perfect W states can be deterministically created on-demand in one step.Numerical simulations show that high-fidelity target states can be generated and our scheme is robust against imperfect parameter tuning and environment-induced decoherence.The present work may have potential applications for implementing quantum computation and quantum information processing based on microwave photons.
基金financial support provided by the Hubei University of Automotive Technology,China in the form of a start-up research grant(BK202212)。
文摘The nonlinear Schrodinger equation equation is one of the most important physical models used in optical fiber theory to explain the transmission of an optical soliton.The field of chiral soliton propagation in nuclear physics is very interesting because of its numerous applications in communications and ultra-fast signal routing systems.The(1+1)-dimensional chiral dynamical structure that describes the soliton behaviour in data transmission is dealt with in this work using a variety of in-depth analytical techniques.This work has applications in particle physics,ionised science,nuclear physics,optics,and other applied mathematical sciences.We are able to develop a variety of solutions to demonstrate the behaviour of solitary wave structures,periodic soliton solutions,chiral soliton solutions,and bell-shaped soliton solutions with the use of applied techniques.Moreover,in order to verify the scientific calculations,the stability analysis for the observed solutions of the governing model is taken into consideration.In addition,the3-dimensional,contour,and 2-dimensional visuals are supplied for a better understanding of the behaviour of the solutions.The employed strategies are dependable,uncomplicated,and effective;yet have not been utilised with the governing model in the literature that is now accessible.The resulting outcomes have impressive applications across a large number of study areas and computational physics phenomena representing real-world scenarios.The methods applied in this model are not utilized on the given models in previous literature so we can say that these describe the novelty of the work.
基金the financial support provided by Hubei University of Automotive Technology in the form of a startup research grant(BK202212)。
文摘We propose a method to implement electromagnetically induced grating in a phaseonium medium that has been coherently generated via atomic mechanisms.Phaseonium atoms have aΛ-type structure and three distinct energy levels;such atoms are originally generated in a coherent superposition of two lower levels.The phaseonium system is comprised of three-level atoms with aΛ-type configuration,which are initially prepared in a coherent superposition of two lower levels.To accomplish this spatial modulation based on the susceptibility of phaseonium medium,a standingwave field is used.By looking at how an optical field diffracts at different relative phases,we find that the zeroth and first order diffraction intensities increase as the relative phase changes.We also investigate the impact of the Rabi frequency of the field on diffraction intensity and notice that an increasing strength of the Rabi frequency leads to amplification in the intensity of both central zeroth order and first-order diffraction.Furthermore,it has been observed that a significant rise in diffraction intensity occurs at longer interaction lengths between external fields and the atomic medium.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274132 and 11550110180
文摘We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck(OU) noise. Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs. A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters, the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations. In addition, it is observed that the non-Markovian strength(γ/Γ) has a positive impact on the correlations time. For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property. Moreover, its decay can be significantly delayed.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.11274132 and 11750110411
文摘In this paper, we examine the transmission of a probe field through a one dimensional photonic crystal (1DPC) when the sixth layer of the crystal is doped with four level atoms. We analyze effects of the external driving field on the passage of weak probe field across the photonic crystal. It is found that for the phase time delay of the probe photons, intensity of the driving field switches the Hartman effect from sub to superluminal character. It is interesting to note that in our model, the superluminal transmission of the probe pulse is accompanied by a negligibly small absorption of the incident beam. It ensures that the probe field does not attenuate while passing through the photonic crystal. A similar switching of the Hartman effect may be obtained by adjusting detuning of the probe field related to the excited states of the four-level doping atoms.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11750110411 and 11274132
文摘We study the tunneling time of ultracold V-type atoms interacting a high quality microwave cavity. Here atomic coherence is introduced in the system by a strong driving field which couples the two lower states of the three-level atom. It is found that in the presence of coherence, mazer action or the scattering like nature of the interaction may be examined for extended energies of the incident cold atoms. Our results show that position and amplitudes of the peak values of the phase time(traversal time) may be very effectively controlled by the coherent driving field. Further, here we obtained superclassical values of the phase time corresponding to much higher values of the transmission amplitudes of the tunneling atoms which may be advantageous in the possible experimental realization of the superclassical tunneling time of the traversing cold atoms. In addition, we examine a mirror reflection type symmetry in the phase time curve for a judicious choice of the external driving field.