Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau pro...Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein.Recent studies suggest that dysregulation of the microtubuleassociated protein Tau,especially specific proteolysis,could be a driving force for Alzheimer's disease neurodegeneration.Tau physiologically promotes the assembly and stabilization of microtubules,whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers,resulting in them gaining prion-like characteristics.In addition,Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner.This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments,investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease,and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.展开更多
Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at t...Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs.展开更多
Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and...Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.展开更多
The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(...The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.展开更多
Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes of...Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.展开更多
Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the ...Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the carbonization condition's effect on the morphology,surface property,and electrochemical performance of the obtained carbon.An open slit pore structure with shower-puff-like nanoparticles can be obtained by finely tuning the carbonization temperature,and its unique pore structure and surface properties enable the Li–O_(2) battery with cycling longevity(221 cycles with 99.8%Coulombic efficiency at 0.2 mA cm^(−2) and controlled discharge–charge depths of 500 mAh g^(−1))and high capacity(16,334 mAh g^(−1) at 0.02 mA cm^(−2)).This work provides a greater understanding of the mechanism of the biochar carbonization procedure under various pyrolysis conditions,paving the way for future study of energy storage devices.展开更多
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins...Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.展开更多
With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control...With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control synthesis routes based on repetitive experiments are often costly and inefficient,which is unsuitable for the broader application of novel materials.The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials.Here,we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model.The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies,helping to shorten the experimental duration and costs.After the model-guided design synthesis,cathode materials with different morphological characteristics can be obtained,and the best shows a high discharge capacity of 206 mAh g^(−1)at 0.1C and 83%capacity retention after 200 cycles.This work provides guidance for designing cathode materials for lithium-ion batteries,which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles.展开更多
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ...Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.展开更多
Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capac...Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials.展开更多
The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Her...The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications.展开更多
Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has...Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate(Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H_(2)O in the solvation sheath of Zn^(2+), increasing de-solvation energy. Concurrently, the Na^(+) could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn^(2+) aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm^(-2). Zn-LiMn_(2)O_(4) full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition.展开更多
The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attentio...The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attention has been focused on modulating and developing catalyst interface contact engineering between a carbon substrate and dispersed metal.Here,a highly dispersed ultrafine ruthenium(Ru)NP strategy by double spatial confinement is proposed,that is,incorporating directed growth of metal–organic framework crystals into a bacterial cellulose templating substrate to integrate their respective merits as an excellent electrocatalytic cathode catalyst for a quasi-solid-state Li–O_(2) battery.The porous carbon matrix with highly dispersed ultrafine Ru NPs is well designed and used as cathode catalysts in a Li–O_(2) battery,demonstrating a high discharge areal capacity of 6.82 mAh cm^(–2) at 0.02 mA cm^(–2),a high-rate capability of 4.93 mAh cm^(–2) at 0.2 mA cm^(–2),and stable discharge/charge cycling for up to 500 cycles(2000 h)with low overpotentials of~1.4 V.This fundamental understanding of the structure–performance relationship demonstrates a new and promising approach to optimize highly efficient cathode catalysts for solid-state Li–O_(2) batteries.展开更多
Cation-disordered rocksalt oxides(DRX)have been identified as promising cathode materials for high energy density applications owing to their variable elemental composition and cationic-anionic redox activity.However,...Cation-disordered rocksalt oxides(DRX)have been identified as promising cathode materials for high energy density applications owing to their variable elemental composition and cationic-anionic redox activity.However,their practical implementation has been impeded by unwanted phenomena such as irrepressible transition metal migration/dissolution and O_(2)/CO_(2)evolution,which arise due to parasitic reactions and densification-degradation mechanisms during extended cycling.To address these issues,a micron-sized DRX cathode Li_(1.2)Ni_(1/3)Ti_(1/3)W_(2/15)O_(1.85)F_(0.15)(SLNTWOF)with F substitution and ultrathin LiF coating layer is developed by alcohols assisted sol-gel method.Within this fluorination-induced integrated structure design(FISD)strategy,in-situ F substitution modifies the activity/reversibility of the cationic-anionic redox reaction,while the ultrathin LiF coating and single-crystal structure synergistically mitigate the cathode/electrolyte parasitic reaction and densification-degradation mechanism.Attributed to the multiple modifications and size effect in the FISD strategy,the SLNTWOF sample exhibits reversible cationic-anionic redox chemistry with a meliorated reversible capacity of 290.3 mA h g^(-1)at 0.05C(1C=200 mA g^(-1)),improved cycling stability of 78.5%capacity retention after 50 cycles at 0.5 C,and modified rate capability of 102.8 mA h g^(-1)at 2 C.This work reveals that the synergistic effects between bulk structure modification,surface regulation,and engineering particle size can effectively modulate the distribution and evolution of cationic-anionic redox activities in DRX cathodes.展开更多
Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by inte...Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.展开更多
基金supported by the Neural Regeneration Co-innovation Center of Jiangsu Province,Nantong University(to DC)the National Natural Science Foundation of China,Nos.81872853(to DC),81870941(to JHG)the Science and Technology Project of Nantong City,Nos.JC22022022(to FW)and JC2021059(to JM)。
文摘Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein.Recent studies suggest that dysregulation of the microtubuleassociated protein Tau,especially specific proteolysis,could be a driving force for Alzheimer's disease neurodegeneration.Tau physiologically promotes the assembly and stabilization of microtubules,whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers,resulting in them gaining prion-like characteristics.In addition,Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner.This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments,investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease,and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U2130204)the National Natural Science Foundation of China(52002022)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(YESS20200364)the Beijing Outstanding Young Scientists Program(BJJWZYJH01201910007023).
文摘Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs.
基金supported by the Natural Science Foundation of China(52272188,U22A20227)the Natural Science Foundation of Beijing(2232025)+2 种基金the Natural Science Foundation of Chongqing(2022NSCQ-MSX2179)the Department of Science and Technology of Henan Province(Z20221343029)the Experimental Center of Advanced Materials in Beijing Institute of Technology。
文摘Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.
基金supported by the National Key R&D Program of China(2021YFB2401800)the National Natural Science Foundation of China(21875022,22179008)+4 种基金the Yibin‘Jie Bang Gua Shuai’(2022JB004)the support from the Beijing Nova Program(20230484241)the support from the Postdoctoral Fellowship Program of CPSF(GZB20230931)the support from the 4B7B beam line of Beijing Synchrotron Radiation Facility(2021-BEPC-PT-005924,2021-BEPC-PT-005967)BL08U1A beam line of Shanghai Synchrotron Radiation Facility(2021-SSRF-PT-017710)。
文摘The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.
基金National Natural Science Foundation of China (22179008, 21875022)Yibin ‘Jie Bang Gua Shuai’ (2022JB004)+3 种基金support from the Beijing Nova Program (20230484241)support from the Postdoctoral Fellowship Program of CPSF (GZB20230931)Special Support of the Chongqing Postdoctoral Research Project (2023CQBSHTB2041)Initial Energy Science & Technology Co., Ltd (IEST)。
文摘Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.
基金supported by the National Natural Science Foundation of China(NSFC No.22179005)the BIT Research and Innovation Promoting Project(Grant No.2022YCXY008)supported by Cunzhong Zhang at the Beijing Institute of Technology.
文摘Although biomass-derived carbon(biochar)has been widely used in the energy field,the relation between the carbonization condition and the physical/chemical property of the product remains elusive.Here,we revealed the carbonization condition's effect on the morphology,surface property,and electrochemical performance of the obtained carbon.An open slit pore structure with shower-puff-like nanoparticles can be obtained by finely tuning the carbonization temperature,and its unique pore structure and surface properties enable the Li–O_(2) battery with cycling longevity(221 cycles with 99.8%Coulombic efficiency at 0.2 mA cm^(−2) and controlled discharge–charge depths of 500 mAh g^(−1))and high capacity(16,334 mAh g^(−1) at 0.02 mA cm^(−2)).This work provides a greater understanding of the mechanism of the biochar carbonization procedure under various pyrolysis conditions,paving the way for future study of energy storage devices.
基金supported by the National Natural Science Foundation of China(22179006)。
文摘Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.
基金supported by the National Natural Science Foundation of China(52072036)the Key Research and Development Program of Henan province,China(231111242500).
文摘With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control synthesis routes based on repetitive experiments are often costly and inefficient,which is unsuitable for the broader application of novel materials.The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials.Here,we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model.The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies,helping to shorten the experimental duration and costs.After the model-guided design synthesis,cathode materials with different morphological characteristics can be obtained,and the best shows a high discharge capacity of 206 mAh g^(−1)at 0.1C and 83%capacity retention after 200 cycles.This work provides guidance for designing cathode materials for lithium-ion batteries,which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles.
基金the support from the National Natural Science Foundation of China(Grant No.22179006)supported by the Beijing Natural Science Foundation(2244101)+1 种基金the National Natural Science Foundation of China(Grant No.52072036)the SINOPEC project(223128)。
文摘Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.
文摘Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials.
基金National Natural Science Foundation of China,Grant/Award Number:22179006Natural Science Foundation of Zhejiang Province,Grant/Award Number:LQ23E020002+4 种基金National Natural Science Foundation of China,Grant/Award Numbers:52202284,52072036Cooperation between Industry and Education Project of Ministry of Education,Grant/Award Number:220601318235513WenZhou Natural Science Foundation,Grant/Award Numbers:G20220019,G20220021State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Grant/Award Number:EIPE22208Key Research and Development Program of Henan province,China,Grant/Award Number:231111242500。
文摘The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications.
基金supported by the National Key R&D Program of China (2022YFB3305400)Beijing Natural Science Foundation (Z220021)+3 种基金Science and Technology Innovation Program Talent Cultivation Project of Beijing Institute of Technology (2021CX01012)the National Natural Science Foundation of China (51972030, 22202011)Beijing Outstanding Young Scientists Program (BJJWZYJH01201910007023)Natural Science Foundation of Shandong Province (ZR2022QB056)。
文摘Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate(Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H_(2)O in the solvation sheath of Zn^(2+), increasing de-solvation energy. Concurrently, the Na^(+) could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn^(2+) aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm^(-2). Zn-LiMn_(2)O_(4) full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition.
基金National Natural Science Foundation of China,Grant/Award Number:22179005National Key Research and Development Program of China,Grant/Award Number:2018YFC1900102。
文摘The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attention has been focused on modulating and developing catalyst interface contact engineering between a carbon substrate and dispersed metal.Here,a highly dispersed ultrafine ruthenium(Ru)NP strategy by double spatial confinement is proposed,that is,incorporating directed growth of metal–organic framework crystals into a bacterial cellulose templating substrate to integrate their respective merits as an excellent electrocatalytic cathode catalyst for a quasi-solid-state Li–O_(2) battery.The porous carbon matrix with highly dispersed ultrafine Ru NPs is well designed and used as cathode catalysts in a Li–O_(2) battery,demonstrating a high discharge areal capacity of 6.82 mAh cm^(–2) at 0.02 mA cm^(–2),a high-rate capability of 4.93 mAh cm^(–2) at 0.2 mA cm^(–2),and stable discharge/charge cycling for up to 500 cycles(2000 h)with low overpotentials of~1.4 V.This fundamental understanding of the structure–performance relationship demonstrates a new and promising approach to optimize highly efficient cathode catalysts for solid-state Li–O_(2) batteries.
基金supported by the National Key R&D Program of China(2021YFB2401800)the National Natural Science Foundation of China(22179008,21875022)+2 种基金the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0589,cstc2020jcyjmsxmX0654)the support from Beijing Institute of Technology Research Fund Program for Young Scholarsthe 4B7B beamlines radiation equipment of Beijing Synchrotron Radiation Facility(2021-BEPC-PT-005924,2021-BEPC-PT-005967)。
文摘Cation-disordered rocksalt oxides(DRX)have been identified as promising cathode materials for high energy density applications owing to their variable elemental composition and cationic-anionic redox activity.However,their practical implementation has been impeded by unwanted phenomena such as irrepressible transition metal migration/dissolution and O_(2)/CO_(2)evolution,which arise due to parasitic reactions and densification-degradation mechanisms during extended cycling.To address these issues,a micron-sized DRX cathode Li_(1.2)Ni_(1/3)Ti_(1/3)W_(2/15)O_(1.85)F_(0.15)(SLNTWOF)with F substitution and ultrathin LiF coating layer is developed by alcohols assisted sol-gel method.Within this fluorination-induced integrated structure design(FISD)strategy,in-situ F substitution modifies the activity/reversibility of the cationic-anionic redox reaction,while the ultrathin LiF coating and single-crystal structure synergistically mitigate the cathode/electrolyte parasitic reaction and densification-degradation mechanism.Attributed to the multiple modifications and size effect in the FISD strategy,the SLNTWOF sample exhibits reversible cationic-anionic redox chemistry with a meliorated reversible capacity of 290.3 mA h g^(-1)at 0.05C(1C=200 mA g^(-1)),improved cycling stability of 78.5%capacity retention after 50 cycles at 0.5 C,and modified rate capability of 102.8 mA h g^(-1)at 2 C.This work reveals that the synergistic effects between bulk structure modification,surface regulation,and engineering particle size can effectively modulate the distribution and evolution of cationic-anionic redox activities in DRX cathodes.
基金supported by the National Natural Science Foundation of China(22209012,52072036)the fellowship of China Postdoctoral Science Foundation(2020M680374)。
文摘Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.