Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,...Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,necessitating the development of automatic logging detection systems in forests.This paper proposesthe use of long-range,low-powered,and smart Internet of Things(IoT)nodes to enhance forest monitoringcapabilities.The research framework involves developing IoT devices for forest sound classification andtransmitting each node’s status to a gateway at the forest base station,which further sends the obtained datathrough cellular connectivity to a cloud server.The key issues addressed in this work include sensor and boardselection,Machine Learning(ML)model development for audio classification,TinyML implementation on amicrocontroller,choice of communication protocol,gateway selection,and power consumption optimization.Unlike the existing solutions,the developed node prototype uses an array of two microphone sensors forredundancy,and an ensemble network consisting of Long Short-Term Memory(LSTM)and ConvolutionalNeural Network(CNN)models for improved classification accuracy.The model outperforms LSTM and CNNmodels when used independently and also gave 88%accuracy after quantization.Notably,this solutiondemonstrates cost efficiency and high potential for scalability.展开更多
In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow sta...In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow state is affected by multiple parameters,with temperature and volumetric flow rate(VFR)being the most critical.The study explores the stable extrusion of flow with a highly sensitive acoustic emission(AE)sensor so that AE signals generated by the friction in the annular region can reflect the flow state more effectively.Nevertheless,the large volume and broad frequency range of the data present processing challenges.This study proposes a method that initially selects short impact signals and then uses the Fast Kurtogram(FK)to identify the frequency with the highest kurtosis for signal filtration.The results indicate that this approach significantly enhances processing speed and improves feature extraction capabilities.By correlating AE characteristics under various parameters with the quality of extruded raster beads,AE can monitor the real-time state of material flow.This study offers a concise and efficient method for monitoring the state of raster beads and demonstrates the potential of online monitoring of the flow states.展开更多
In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great im...In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great impact on the product quality.It is necessary to monitor the status of equipment and to predict fault diagnosis.At present,most of the condition monitoring devices for mechanical equipment have problems of large size,low precision and low energy utilization.A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed.Based on rotor sensing technology,a sensor is made to mount on the tool holder and build the related circuit.Firstly,the energy management module collects the mechanical energy in the environment and converts the piezoelectric vibration energy into electric energy to provide 3.3 Vfor the subsequent circuit.The lithium battery supplies the system with additional power and monitors’the power of the energy storage circuit in real-time.Secondly,a three-axis acceleration sensor is used to collect,analyze and filter a series of signal processing operations of the vibration signal in the environment.The signal is sent to the upper computer by wireless transmission.The host computer outputs the corresponding X,Y,and Z channel waveforms and data under the condition of the spindle speed of 50∼2500 r/min with real-time monitoring.The KEIL5 platform is used to develop the system software.The small-size piezoelectric vibration sensor with high-speed,high-energy utilization,high accuracy,and easy installation is used for spindle monitoring.The experiment results show that the sensor system is available and practical.展开更多
Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not ...Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not meet the requirement.This leads to the so-called few-shot learning(FSL)problem,which requires the model rapidly generalize to new tasks that containing only a few labeled samples.In this paper,we proposed a new deep model,called deep convolutional meta-learning networks,to address the low performance of generalization under limited data for bearing fault diagnosis.The essential of our approach is to learn a base model from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks before it can adapt to the new learning task based on limited training data.The proposed method was compared to several FSL methods,including methods with and without pre-training the embedding mapping,and methods with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain.The comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing dataset and a cylindrical roller bearing dataset.The experimental result illustrates that our method has good performance on the bearing fault diagnosis across various few-shot conditions.In addition,we found that the pretraining process does not always improve the prediction accuracy.展开更多
In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining ope...In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining operations.At present,most chatter monitoring methods are based on the energy level at specified chatter frequencies or frequency bands.However,the spectral features of chatter could change during machining operations due to complexity and time-varying dynamics of the physical machining process.The purpose of this paper is to investigate the time-varying chatter features in turning of thin-walled tubular workpieces from the perspective of entropy.The airborne acoustics was selected as the source of information for machining condition monitoring.First,corresponding to the distinguishing surface topographies relevant to machining conditions,the features of the sound signal emitted during turning of the thin-walled cylindrical workpieces were extracted using the spectral analysis and wavelet packet transform,respectively.It was shown that the dominant vibration frequency as well as the energy distribution could shift with the transition of the machining status.After that,two relative entropy indicators based on the spectrum and the wavelet packet energy were constructed to identify chattering events in turning of the thin-walled tubes.The experimental results demonstrate that the proposed indicators could accurately reflect the transition of machining conditions with high sensitivity and robustness in comparison with the traditional FFT-based methods.The achievement of this study lays the foundations of the online chatter monitoring and control technique for turning of the thin-walled tubular workpieces.展开更多
Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely ...Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.展开更多
Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new a...Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new approach to detection and diagnosis of motor bearing faults based on induction motor stator current analysis. Tests were performed with three bearing conditions: baseline, outer race fault and inner race fault. Because the signals associated with faults produce small modulations to supply component and high nose levels, a modulation signal bispectrum (MSB) is used in this paper to detect and diagnose different motor bearing defects. The results show that bearing faults can induced a detestable amplitude increases at its characteristic frequencies. MSB peaks show a clear difference at these frequencies whereas conventional power spectrum provides change evidences only at some of the frequencies. This shows that MSB has a better and reliable performance in extract small changes from the faulty bearing for fault detection and diagnosis. In addition, the study also show that current signals from motors with variable frequency drive controller have too much noise and it is unlikely to discriminate the small bearing fault component.展开更多
Periodical impulse component is one of typical fault characteristics in vibration signals from rotating machinery. However, this component is very small in the early stage of the fault and masked by various noises suc...Periodical impulse component is one of typical fault characteristics in vibration signals from rotating machinery. However, this component is very small in the early stage of the fault and masked by various noises such as gear meshing components modulated by shaft frequency, which make it difficult to extract accurately for fault detection. The adaptive line enhancer (ALE) is an effective technique for separating sinusoidals from broad-band components of an input signal for detecting the presence of sinusoids in white noise. In this paper, ALE is explored to suppress the periodical gear meshing frequencies and enhance the fault feature impulses for more accurate fault diagnosis. The results obtained from simulated and experimental vibration signals of a two stage helical gearbox prove that the ALE method is very effective in reducing the periodical gear meshing noise and making the impulses in vibration very clear in the time-frequency analysis. The results show a clear difference between the baseline and 30% tooth damage of a helical gear which has not been detected successfully in author’s previous studies.展开更多
Thanks to the fast development of micro-electro-mechanical systems(MEMS)technologies,MEMS accelerometers show great potentialities for machine condition monitoring.To overcome the problems of a poor signal to noise ra...Thanks to the fast development of micro-electro-mechanical systems(MEMS)technologies,MEMS accelerometers show great potentialities for machine condition monitoring.To overcome the problems of a poor signal to noise ratio(SNR),complicated modulation,and high costs of vibration measurement and computation using conventional integrated electronics piezoelectric accelerometers,a triaxialMEMS accelerometer-based on-rotor sensing(ORS)technology was developed in this study.With wireless data transmission capability,the ORS unit can be mounted on a rotating rotor to obtain both rotational and transverse dynamics of the rotor with a high SNR.The orthogonal outputs lead to a construction method of analytic signals in the time domain,which is versatile in fault detection and diagnosis of rotating machines.Two case studies based on an induction motor were carried out,which demonstrated that incipient bearing defect and half-broken rotor bar can be effectively diagnosed by the proposed measurement and analysis methods.Comparatively,vibration signals from translational on-casing accelerometers are less capable of detecting such faults.This demonstrates the superiority of the ORS vibrations in fault detection of rotating machines.展开更多
Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key mea...Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key measured signals is essential.However,measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors,potentially diminishing model estimation accuracy.Addressing the challenge of accuracy reduction caused by noise,this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares(BCFFRLS)method.Initially,a variational error model is crafted to estimate the average weighted variance of random noise.Subsequently,an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors,compensating for bias in the parameter estimates.To assess the proposed method's effectiveness in improving parameter identification accuracy,lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule(UDDS),Dynamic Stress Test(DST),and Hybrid Pulse Power Characterization(HPPC).The proposed method,alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares(FFRLS)—was employed for battery model parameter identification.Comparative analysis reveals substantial improvements,with the mean absolute error reduced by 25%,28%,and 15%,and the root mean square error reduced by 25.1%,42.7%,and 15.9%in UDDS,HPPC,and DST operating conditions,respectively,when compared to the FFRLS method.展开更多
Acoustic emission(AE) has been studied for monitoring the condition of mechanical seals by many researchers, however to the best knowledge of the authors, typical fault cases and their effects on tribological behaviou...Acoustic emission(AE) has been studied for monitoring the condition of mechanical seals by many researchers, however to the best knowledge of the authors, typical fault cases and their effects on tribological behaviour of mechanical seals have not yet been successfully investigated. In this paper, AE signatures from common faults of mechanical seals are studied in association with tribological behaviour of sealing gap to develop more reliable condition monitoring approaches. A purpose-built test rig was employed for recording AE signals from the mechanical seals under healthy and faulty conditions. The collected data was then processed using time domain and frequency domain analysis methods. The study has shown that AE signal parameters: root mean squared(RMS) along with AE spectrum, allows fault conditions including dry running, spring out and defective seal faces to be diagnosed under a wide range of operating conditions. However, when mechanical seals operate around their transition point, conventional signal processing methods may not allow a clear separation of the fault conditions from the healthy baseline. Therefore an auto-regressive(AR) model has been developed on recorded AE signals to classify different fault conditions of mechanical seals and satisfactory results have been perceived.展开更多
The inevitable deterioration of the lubrication conditions in a gearbox in service can change the tribological properties of the meshing teeth. In turn, such changes can significantly affect the dynamic responses and ...The inevitable deterioration of the lubrication conditions in a gearbox in service can change the tribological properties of the meshing teeth. In turn, such changes can significantly affect the dynamic responses and running status of gear systems. This paper investigates such an effect by utilizing virtual prototype technology to model and simulate the dynamics of a wind turbine gearbox system. The change in the lubrication conditions is modeled by the changes in the friction coefficients, thereby indicating that poor lubrication causes not only increased frictional losses but also significant changes in the dynamic responses. These results are further demon-strated by the mean and root mean square values calculated by the simulated responses under different friction coefficients. In addition, the spectrum exhibits significant changes in the first, second, and third harmonics of the meshing components. The findings and simulation method of this study provide theoretical bases for the development of accurate diagnostic techniques.展开更多
As condition monitoring of systems continues to grow in both complexity and application, an overabundance of data is amassed. Computational capabilities are unable to keep abreast of the subsequent processing requirem...As condition monitoring of systems continues to grow in both complexity and application, an overabundance of data is amassed. Computational capabilities are unable to keep abreast of the subsequent processing requirements. Thus, a means of establishing computable prognostic models to accurately reflect process condition, whilst alleviating computational burdens, is essential. This is achievable by restricting the amount of information input that is redundant to modelling algorithms. In this paper, a variable clustering approach is investigated to reorganise the harmonics of common diagnostic features in rotating machinery into a smaller number of heterogeneous groups that reflect conditions of the machine with minimal information redundancy. Na?ve Bayes classifiers established using a reduced number of highly sensitive input parameters realised superior classification powers over higher dimensional classifiers,demonstrating the effectiveness of the proposed approach. Furthermore, generic parameter capabilities were evidenced through confirmatory factor analysis. Parameters with superior deterministic power were identified alongside complimentary, uncorrelated, variables.Particularly, variables with little explanatory capacity could be eliminated and lead to further variable reductions. Their information sustainability is also evaluated with Na?ve Bayes classifiers, showing that successive classification rates are sufficiently high when the first few harmonics are used. Further gains were illustrated on compression of chosen envelope harmonic features. A Na?ve Bayes classification model incorporating just two compressed input variables realised an 83.3% success rate, both an increase in classification rate and an immense improvement volume-wise on the former ten parameter model.展开更多
This paper presents investigations into the influences of bearing clearances on the diagnostic features of monitoring rolling-bearings. A nonlinear dynamic model of a deep groove ball bearing with five degrees of free...This paper presents investigations into the influences of bearing clearances on the diagnostic features of monitoring rolling-bearings. A nonlinear dynamic model of a deep groove ball bearing with five degrees of freedom is developed for numerical analysis under increased radial clearances which are due to not only the scenarios of bearing grades but also gradual wear with bearing service lifetime. The model incorporates local defects and clearance increments in order to gain the insight into the bearing dynamics under different fault cases along with clearance changes. Numerical results show that the vibrations at fault characteristic frequencies exhibit clear inconsistency with common understandings for different cases of increased clearances. This study highlights that it has to take into account the clearance effect, especially for the inner race fault, in order to avoid the under-estimate of fault sizes which may be indicated by the feature amplitude reduction.展开更多
基金funded by Climate Change AI(2023 innovation grant-https://www.climatechange.ai/innovation_grants).
文摘Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,necessitating the development of automatic logging detection systems in forests.This paper proposesthe use of long-range,low-powered,and smart Internet of Things(IoT)nodes to enhance forest monitoringcapabilities.The research framework involves developing IoT devices for forest sound classification andtransmitting each node’s status to a gateway at the forest base station,which further sends the obtained datathrough cellular connectivity to a cloud server.The key issues addressed in this work include sensor and boardselection,Machine Learning(ML)model development for audio classification,TinyML implementation on amicrocontroller,choice of communication protocol,gateway selection,and power consumption optimization.Unlike the existing solutions,the developed node prototype uses an array of two microphone sensors forredundancy,and an ensemble network consisting of Long Short-Term Memory(LSTM)and ConvolutionalNeural Network(CNN)models for improved classification accuracy.The model outperforms LSTM and CNNmodels when used independently and also gave 88%accuracy after quantization.Notably,this solutiondemonstrates cost efficiency and high potential for scalability.
文摘In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow state is affected by multiple parameters,with temperature and volumetric flow rate(VFR)being the most critical.The study explores the stable extrusion of flow with a highly sensitive acoustic emission(AE)sensor so that AE signals generated by the friction in the annular region can reflect the flow state more effectively.Nevertheless,the large volume and broad frequency range of the data present processing challenges.This study proposes a method that initially selects short impact signals and then uses the Fast Kurtogram(FK)to identify the frequency with the highest kurtosis for signal filtration.The results indicate that this approach significantly enhances processing speed and improves feature extraction capabilities.By correlating AE characteristics under various parameters with the quality of extruded raster beads,AE can monitor the real-time state of material flow.This study offers a concise and efficient method for monitoring the state of raster beads and demonstrates the potential of online monitoring of the flow states.
基金supported by the National Natural Science Foundation of China(51975058).
文摘In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great impact on the product quality.It is necessary to monitor the status of equipment and to predict fault diagnosis.At present,most of the condition monitoring devices for mechanical equipment have problems of large size,low precision and low energy utilization.A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed.Based on rotor sensing technology,a sensor is made to mount on the tool holder and build the related circuit.Firstly,the energy management module collects the mechanical energy in the environment and converts the piezoelectric vibration energy into electric energy to provide 3.3 Vfor the subsequent circuit.The lithium battery supplies the system with additional power and monitors’the power of the energy storage circuit in real-time.Secondly,a three-axis acceleration sensor is used to collect,analyze and filter a series of signal processing operations of the vibration signal in the environment.The signal is sent to the upper computer by wireless transmission.The host computer outputs the corresponding X,Y,and Z channel waveforms and data under the condition of the spindle speed of 50∼2500 r/min with real-time monitoring.The KEIL5 platform is used to develop the system software.The small-size piezoelectric vibration sensor with high-speed,high-energy utilization,high accuracy,and easy installation is used for spindle monitoring.The experiment results show that the sensor system is available and practical.
基金This research was funded by RECLAIM project“Remanufacturing and Refurbishment of Large Industrial Equipment”and received funding from the European Commission Horizon 2020 research and innovation program under Grant Agreement No.869884The authors also acknowledge the support of The Efficiency and Performance Engineering Network International Collaboration Fund Award 2022(TEPEN-ICF 2022)project“Intelligent Fault Diagnosis Method and System with Few-Shot Learning Technique under Small Sample Data Condition”.
文摘Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not meet the requirement.This leads to the so-called few-shot learning(FSL)problem,which requires the model rapidly generalize to new tasks that containing only a few labeled samples.In this paper,we proposed a new deep model,called deep convolutional meta-learning networks,to address the low performance of generalization under limited data for bearing fault diagnosis.The essential of our approach is to learn a base model from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks before it can adapt to the new learning task based on limited training data.The proposed method was compared to several FSL methods,including methods with and without pre-training the embedding mapping,and methods with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain.The comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing dataset and a cylindrical roller bearing dataset.The experimental result illustrates that our method has good performance on the bearing fault diagnosis across various few-shot conditions.In addition,we found that the pretraining process does not always improve the prediction accuracy.
基金The financial support of National Natural Science Foundation of China(Grant Nos.52175108,51805352)is gratefully acknowledgedWe also would like to acknowledge the Key Research and Development Project of Shanxi Province(Grant No.202102010101009).
文摘In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining operations.At present,most chatter monitoring methods are based on the energy level at specified chatter frequencies or frequency bands.However,the spectral features of chatter could change during machining operations due to complexity and time-varying dynamics of the physical machining process.The purpose of this paper is to investigate the time-varying chatter features in turning of thin-walled tubular workpieces from the perspective of entropy.The airborne acoustics was selected as the source of information for machining condition monitoring.First,corresponding to the distinguishing surface topographies relevant to machining conditions,the features of the sound signal emitted during turning of the thin-walled cylindrical workpieces were extracted using the spectral analysis and wavelet packet transform,respectively.It was shown that the dominant vibration frequency as well as the energy distribution could shift with the transition of the machining status.After that,two relative entropy indicators based on the spectrum and the wavelet packet energy were constructed to identify chattering events in turning of the thin-walled tubes.The experimental results demonstrate that the proposed indicators could accurately reflect the transition of machining conditions with high sensitivity and robustness in comparison with the traditional FFT-based methods.The achievement of this study lays the foundations of the online chatter monitoring and control technique for turning of the thin-walled tubular workpieces.
基金Supported by Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xi’an University of Science and Technology(Grant No.SKL-MEEIM201904)National Natural Science Foundation of China(Grant Nos.51805352,51605380).
文摘Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.
文摘Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new approach to detection and diagnosis of motor bearing faults based on induction motor stator current analysis. Tests were performed with three bearing conditions: baseline, outer race fault and inner race fault. Because the signals associated with faults produce small modulations to supply component and high nose levels, a modulation signal bispectrum (MSB) is used in this paper to detect and diagnose different motor bearing defects. The results show that bearing faults can induced a detestable amplitude increases at its characteristic frequencies. MSB peaks show a clear difference at these frequencies whereas conventional power spectrum provides change evidences only at some of the frequencies. This shows that MSB has a better and reliable performance in extract small changes from the faulty bearing for fault detection and diagnosis. In addition, the study also show that current signals from motors with variable frequency drive controller have too much noise and it is unlikely to discriminate the small bearing fault component.
文摘Periodical impulse component is one of typical fault characteristics in vibration signals from rotating machinery. However, this component is very small in the early stage of the fault and masked by various noises such as gear meshing components modulated by shaft frequency, which make it difficult to extract accurately for fault detection. The adaptive line enhancer (ALE) is an effective technique for separating sinusoidals from broad-band components of an input signal for detecting the presence of sinusoids in white noise. In this paper, ALE is explored to suppress the periodical gear meshing frequencies and enhance the fault feature impulses for more accurate fault diagnosis. The results obtained from simulated and experimental vibration signals of a two stage helical gearbox prove that the ALE method is very effective in reducing the periodical gear meshing noise and making the impulses in vibration very clear in the time-frequency analysis. The results show a clear difference between the baseline and 30% tooth damage of a helical gear which has not been detected successfully in author’s previous studies.
基金This work was supported by the innovating major training projects of Beijing Institute of Technology,Zhuhai(XKCQ-2019-06)the NSFC-RS joint research project under grants IE181496 in the UK and 11911530177 in China.
文摘Thanks to the fast development of micro-electro-mechanical systems(MEMS)technologies,MEMS accelerometers show great potentialities for machine condition monitoring.To overcome the problems of a poor signal to noise ratio(SNR),complicated modulation,and high costs of vibration measurement and computation using conventional integrated electronics piezoelectric accelerometers,a triaxialMEMS accelerometer-based on-rotor sensing(ORS)technology was developed in this study.With wireless data transmission capability,the ORS unit can be mounted on a rotating rotor to obtain both rotational and transverse dynamics of the rotor with a high SNR.The orthogonal outputs lead to a construction method of analytic signals in the time domain,which is versatile in fault detection and diagnosis of rotating machines.Two case studies based on an induction motor were carried out,which demonstrated that incipient bearing defect and half-broken rotor bar can be effectively diagnosed by the proposed measurement and analysis methods.Comparatively,vibration signals from translational on-casing accelerometers are less capable of detecting such faults.This demonstrates the superiority of the ORS vibrations in fault detection of rotating machines.
基金Scientific Research Project of Tianjin Education Commission(Grant No:2023KJ303)Hebei Provincial Department of Education(Grant No:C20220315)+1 种基金Tianjin Natural Science Foundation(Grant No:21JCZDJC00720)Hebei Natural Science Foundation(Grant No:E2022202047).
文摘Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key measured signals is essential.However,measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors,potentially diminishing model estimation accuracy.Addressing the challenge of accuracy reduction caused by noise,this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares(BCFFRLS)method.Initially,a variational error model is crafted to estimate the average weighted variance of random noise.Subsequently,an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors,compensating for bias in the parameter estimates.To assess the proposed method's effectiveness in improving parameter identification accuracy,lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule(UDDS),Dynamic Stress Test(DST),and Hybrid Pulse Power Characterization(HPPC).The proposed method,alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares(FFRLS)—was employed for battery model parameter identification.Comparative analysis reveals substantial improvements,with the mean absolute error reduced by 25%,28%,and 15%,and the root mean square error reduced by 25.1%,42.7%,and 15.9%in UDDS,HPPC,and DST operating conditions,respectively,when compared to the FFRLS method.
文摘Acoustic emission(AE) has been studied for monitoring the condition of mechanical seals by many researchers, however to the best knowledge of the authors, typical fault cases and their effects on tribological behaviour of mechanical seals have not yet been successfully investigated. In this paper, AE signatures from common faults of mechanical seals are studied in association with tribological behaviour of sealing gap to develop more reliable condition monitoring approaches. A purpose-built test rig was employed for recording AE signals from the mechanical seals under healthy and faulty conditions. The collected data was then processed using time domain and frequency domain analysis methods. The study has shown that AE signal parameters: root mean squared(RMS) along with AE spectrum, allows fault conditions including dry running, spring out and defective seal faces to be diagnosed under a wide range of operating conditions. However, when mechanical seals operate around their transition point, conventional signal processing methods may not allow a clear separation of the fault conditions from the healthy baseline. Therefore an auto-regressive(AR) model has been developed on recorded AE signals to classify different fault conditions of mechanical seals and satisfactory results have been perceived.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51575177), the China Scholarship Council, the China Postdoctoral Science Foundation, and the Science and Technology Department of Hunan Province (Grant No. 2015JC3108).
文摘The inevitable deterioration of the lubrication conditions in a gearbox in service can change the tribological properties of the meshing teeth. In turn, such changes can significantly affect the dynamic responses and running status of gear systems. This paper investigates such an effect by utilizing virtual prototype technology to model and simulate the dynamics of a wind turbine gearbox system. The change in the lubrication conditions is modeled by the changes in the friction coefficients, thereby indicating that poor lubrication causes not only increased frictional losses but also significant changes in the dynamic responses. These results are further demon-strated by the mean and root mean square values calculated by the simulated responses under different friction coefficients. In addition, the spectrum exhibits significant changes in the first, second, and third harmonics of the meshing components. The findings and simulation method of this study provide theoretical bases for the development of accurate diagnostic techniques.
文摘As condition monitoring of systems continues to grow in both complexity and application, an overabundance of data is amassed. Computational capabilities are unable to keep abreast of the subsequent processing requirements. Thus, a means of establishing computable prognostic models to accurately reflect process condition, whilst alleviating computational burdens, is essential. This is achievable by restricting the amount of information input that is redundant to modelling algorithms. In this paper, a variable clustering approach is investigated to reorganise the harmonics of common diagnostic features in rotating machinery into a smaller number of heterogeneous groups that reflect conditions of the machine with minimal information redundancy. Na?ve Bayes classifiers established using a reduced number of highly sensitive input parameters realised superior classification powers over higher dimensional classifiers,demonstrating the effectiveness of the proposed approach. Furthermore, generic parameter capabilities were evidenced through confirmatory factor analysis. Parameters with superior deterministic power were identified alongside complimentary, uncorrelated, variables.Particularly, variables with little explanatory capacity could be eliminated and lead to further variable reductions. Their information sustainability is also evaluated with Na?ve Bayes classifiers, showing that successive classification rates are sufficiently high when the first few harmonics are used. Further gains were illustrated on compression of chosen envelope harmonic features. A Na?ve Bayes classification model incorporating just two compressed input variables realised an 83.3% success rate, both an increase in classification rate and an immense improvement volume-wise on the former ten parameter model.
文摘This paper presents investigations into the influences of bearing clearances on the diagnostic features of monitoring rolling-bearings. A nonlinear dynamic model of a deep groove ball bearing with five degrees of freedom is developed for numerical analysis under increased radial clearances which are due to not only the scenarios of bearing grades but also gradual wear with bearing service lifetime. The model incorporates local defects and clearance increments in order to gain the insight into the bearing dynamics under different fault cases along with clearance changes. Numerical results show that the vibrations at fault characteristic frequencies exhibit clear inconsistency with common understandings for different cases of increased clearances. This study highlights that it has to take into account the clearance effect, especially for the inner race fault, in order to avoid the under-estimate of fault sizes which may be indicated by the feature amplitude reduction.