期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and evaluation of crosslinked sulfonated polyphosphazene with poly(aryloxy cyclotriphosphazene) for proton exchange membrane 被引量:1
1
作者 Yan Dong Hulin Xu +1 位作者 fengyan fu Changjin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期472-480,共9页
Several crosslinked proton exchange membranes with high proton conductivities and low methanol permeability coefficients were prepared, based on the sulfonated poly[(4-fluorophenoxy)(phenoxy)] phosphazene(SPFPP) and n... Several crosslinked proton exchange membranes with high proton conductivities and low methanol permeability coefficients were prepared, based on the sulfonated poly[(4-fluorophenoxy)(phenoxy)] phosphazene(SPFPP) and newly synthesized water soluble sulfonated poly(cyclophosphazene)(SPCP) containing clustered flexible pendant sulfonic acids. The structure of SPCP was characterized by fourier transform infrared spectroscopy(FTIR) and ~1H NMR spectra. The membranes showed moderate proton conductivities and much lower methanol permeability coefficients when compared to Nafion 117. Transmission electron microscopy(TEM) results indicated the well-defined phase separation between the locally and densely sulfonated units and hydrophobic units, which induced efficient proton conduction. In comparison with SPFPP membrane, the proton conductivities, oxidative stabilities and mechanical properties of crosslinked membranes remarkably were improved. The selectivity values of all the crosslinked membranes were also much higher than that of Nafion 117(0.74×10~5S· s/cm~3). These results suggested that the c SPFPP/SPCP membranes were promising candidate materials for proton exchange membrane in direct methanol fuel cells. 展开更多
关键词 POLYPHOSPHAZENE Proton exchange membrane Phase separation Direct methanol fuel cell
下载PDF
Emission-tunable Ba_(2)Y_(1-x)Sc_(x)NbO_(6):Bi^(3+)(0≤x≤1.0)phosphors for white LEDs 被引量:2
2
作者 Zhihua Gao fengyan fu +2 位作者 Lili Niu Min Jin Xiaohong Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1819-1826,I0001,共9页
Here,we report a series of Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)(0≤x≤1.0 mol)phosphors by using the traditional high temperature solid-state reaction.To achieve the structural and photoluminescent(PL)information,... Here,we report a series of Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)(0≤x≤1.0 mol)phosphors by using the traditional high temperature solid-state reaction.To achieve the structural and photoluminescent(PL)information,several experimental characterizations and theoretical calculations were carried out,including X-ray diffraction(XRD),Rietveld refinement,UV-visible diffuse reflectance and PL spectra,temperature dependent PL spectra,and density functional theo retical(DFT)calculations.The XRD results show that the Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)samples belong to the double-perovskite phase with a cubic space group of Fm3 m,and the diffraction positions shift toward high diffraction angle when the larger Y^(3+)ions are gradually replaced by the smaller Sc^(3+)ions.In addition,the refined XRD findings show that the Bi^(3+)ions tend to substitute the Y^(3+)and Sc^(3+)sites in the Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)0<x<1.0 mol)solid solutions.The PL spectra show that the emission positions of the solid solution samples tune from446 to 497 nm with the increase of Sc^(3+) content,which can be attributed to the modification of crystal field strength around Bi^(3+)ions.Moreover,there is energy transfer from the Ba_(2)YNbO_(6)host to Bi^(3+)ions,which is dominated by a resonant type via a dipole-quadrupole(d-q)interaction.The Ba_(2)Y_(0.6)Sc_(0.4)NbO_(6):0.02 molBi^(3+)shows the strongest PL intensity under 365 nm excitation,with the best quantum efficiency(QE)of 68%,and it keeps 60%of the room temperature emission intensity when the temperature increases to 150℃,meaning that the Ba_(2)Y_(0.6)Sc_(0.4)NbO_(6):Bi^(3+)features excellent thermal quenching of luminescence.By combining this optimal sample with a commercial red-emitting Sr_(2)Si_(5)N_(8):Eu^(2+)phosphor,and a commercial 365 nm UV LED chip,a white LED device,with the color temperature(CT)of 3678 K,color rendering index(CRI)of 67.9,and CIE coordinates at(0.371,0.376),is achieved. 展开更多
关键词 Bi^(3+) DOUBLE-PEROVSKITE Tunable emission Energy transfer White LEDs Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部