Based on regional climate model simulations conducted with RegCM3 and NCEP Reanalyses, the impact of anomalous climate forcing on environmental vulnerability to wildfire occurrence in Africa is analyzed by applying th...Based on regional climate model simulations conducted with RegCM3 and NCEP Reanalyses, the impact of anomalous climate forcing on environmental vulnerability to wildfire occurrence in Africa is analyzed by applying the Potential Fire Index (PFI). Three different model-based vegetation distributions were analyzed for a present day simulation (1980-2000) and for the end of the twenty-first century (2080-2100). It was demonstrated that under current climate and vegetation conditions the PFI is able to reproduce the principal fire risk areas which are concentrated in the Sahelian region from December to March, and in subtropical Africa from July to October. Predicted future changes in vegetation lead to substantial modifications in magnitude of the PFI, particularly for the southern and subtropical region of Africa. The impact of climate changes other than through vegetation, was found to induce more moderate changes in the fire risk, and increase the area vulnerable to fire occurrence in particular in sub-Saharan. The PFI reproduces areas with high fire activity, indicating that this index is a useful tool for forecasting fire occurrence worldwide, because it is based on regionally dependent vegetation and climate factors.展开更多
Brazil is responsible for 27% of the world production of soybeans and 7% of maize. Mato Grosso and Para states in Brazil are among the largest producer. The viability to the cultivation of maize (Zea mays) and soybean...Brazil is responsible for 27% of the world production of soybeans and 7% of maize. Mato Grosso and Para states in Brazil are among the largest producer. The viability to the cultivation of maize (Zea mays) and soybeans (Glycine max), for future climate scenarios (2070-2100, GHG) is evaluated based on crop modeling (DSSAT) forced by observational data and regional climate simulations (HadRM3). The results demonstrated that a substantial reduction in the yield in particular for maize may be expected for the end of the 21st century. Distinct results are found for soybeans. By applying the A2 climate changes scenario, soybean yield rises by up top 60% assuming optimum soil treatment and no water stress. However, by analyzing the inter-annual variability of crop yields for both maize and soybean, could be demonstrated larger year-to-year fluctuations under greenhouse warming conditions as compared to current conditions, leading to very low productivity by the end of the 21st century. Therefore, these Brazilian states do not appear to be economically suitable for a future cultivation of maize and soybeans. Improved adaptation measures and soil management may however partially alleviate the negative climate change effect.展开更多
基金This work has been supported by the SoCoCA project funded by the Research Council of Norway(contract 190159).
文摘Based on regional climate model simulations conducted with RegCM3 and NCEP Reanalyses, the impact of anomalous climate forcing on environmental vulnerability to wildfire occurrence in Africa is analyzed by applying the Potential Fire Index (PFI). Three different model-based vegetation distributions were analyzed for a present day simulation (1980-2000) and for the end of the twenty-first century (2080-2100). It was demonstrated that under current climate and vegetation conditions the PFI is able to reproduce the principal fire risk areas which are concentrated in the Sahelian region from December to March, and in subtropical Africa from July to October. Predicted future changes in vegetation lead to substantial modifications in magnitude of the PFI, particularly for the southern and subtropical region of Africa. The impact of climate changes other than through vegetation, was found to induce more moderate changes in the fire risk, and increase the area vulnerable to fire occurrence in particular in sub-Saharan. The PFI reproduces areas with high fire activity, indicating that this index is a useful tool for forecasting fire occurrence worldwide, because it is based on regionally dependent vegetation and climate factors.
基金This study has been sponsored by the National Institute of Science and Technology Climate Change and by the SoCoCA project funded by the Research Council of Norway(contract 190159)Moreover support has been provided by the sub-rede Agricultura do MCTI and by the INCT-Mudanças Climáticas.
文摘Brazil is responsible for 27% of the world production of soybeans and 7% of maize. Mato Grosso and Para states in Brazil are among the largest producer. The viability to the cultivation of maize (Zea mays) and soybeans (Glycine max), for future climate scenarios (2070-2100, GHG) is evaluated based on crop modeling (DSSAT) forced by observational data and regional climate simulations (HadRM3). The results demonstrated that a substantial reduction in the yield in particular for maize may be expected for the end of the 21st century. Distinct results are found for soybeans. By applying the A2 climate changes scenario, soybean yield rises by up top 60% assuming optimum soil treatment and no water stress. However, by analyzing the inter-annual variability of crop yields for both maize and soybean, could be demonstrated larger year-to-year fluctuations under greenhouse warming conditions as compared to current conditions, leading to very low productivity by the end of the 21st century. Therefore, these Brazilian states do not appear to be economically suitable for a future cultivation of maize and soybeans. Improved adaptation measures and soil management may however partially alleviate the negative climate change effect.