期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-scale UDCT dictionary learning based highly undersampled MR image reconstruction using patch-based constraint splitting augmented Lagrangian shrinkage algorithm 被引量:2
1
作者 Min YUAN Bing-xin YANG +3 位作者 Yi-de MA Jiu-wen ZHANG fu-xiang lu Tong-feng ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第12期1069-1087,共19页
Recently, dictionary learning(DL) based methods have been introduced to compressed sensing magnetic resonance imaging(CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictio... Recently, dictionary learning(DL) based methods have been introduced to compressed sensing magnetic resonance imaging(CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictionary directly from image patches is incapable of representing image features from multi-scale, multi-directional perspective, which influences the reconstruction performance. In this paper, incorporating the superior multi-scale properties of uniform discrete curvelet transform(UDCT) with the data matching adaptability of trained dictionaries, we propose a flexible sparsity framework to allow sparser representation and prominent hierarchical essential features capture for magnetic resonance(MR) images. Multi-scale decomposition is implemented by using UDCT due to its prominent properties of lower redundancy ratio, hierarchical data structure, and ease of implementation. Each sub-dictionary of different sub-bands is trained independently to form the multi-scale dictionaries. Corresponding to this brand-new sparsity model, we modify the constraint splitting augmented Lagrangian shrinkage algorithm(C-SALSA) as patch-based C-SALSA(PB C-SALSA) to solve the constraint optimization problem of regularized image reconstruction. Experimental results demonstrate that the trained sub-dictionaries at different scales, enforcing sparsity at multiple scales, can then be efficiently used for MRI reconstruction to obtain satisfactory results with further reduced undersampling rate. Multi-scale UDCT dictionaries potentially outperform both single-scale trained dictionaries and multi-scale analytic transforms. Our proposed sparsity model achieves sparser representation for reconstructed data, which results in fast convergence of reconstruction exploiting PB C-SALSA. Simulation results demonstrate that the proposed method outperforms conventional CS-MRI methods in maintaining intrinsic properties, eliminating aliasing, reducing unexpected artifacts, and removing noise. It can achieve comparable performance of reconstruction with the state-of-the-art methods even under substantially high undersampling factors. 展开更多
关键词 Compressed sensing(CS) Magnetic resonance imaging(MRI) Uniform discrete curvelet transform(UDCT) Multi-scale dictionary learning(MSDL) Patch-based constraint splitting augmented Lagrangian shrinkage algorithm(PB C-SALSA)
原文传递
Beyond bag of latent topics: spatial pyramid matching for scene category recognition 被引量:2
2
作者 fu-xiang lu Jun HUANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第10期817-828,共12页
We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the l... We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the latent topics are obtained by using probabilistic latent semantic analysis (pLSA) based on the bag-of-words representation. The proposed feature always performs better than standard pLSA because the performance of pLSA is adversely affected in many cases due to the loss of spatial information. By combining various interest point detectors and local region descriptors used in the bag-of-words model, the proposed feature can make further improvement for diverse scene category recognition tasks. We also propose a two-stage framework for multi-class classification. In the first stage, for each of possible detector/descriptor pairs, adaptive boosting classifiers are employed to select the most discriminative topics and further compute posterior probabilities of an unknown image from those selected topics. The second stage uses the prod-max rule to combine information coming from multiple sources and assigns the unknown image to the scene category with the highest 'final' posterior probability. Experimental results on three benchmark scene datasets show that the proposed method exceeds most state-of-the-art methods. 展开更多
关键词 Scene category recognition Probabilistic latent semantic analysis BAG-OF-WORDS Adaptive boosting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部