期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Estimating the site effects in Luoyang basin using horizontal-to-vertical spectral ratio method from a short-period dense array 被引量:3
1
作者 Yujuan Tan Yunhao Wei +1 位作者 Yonghong Duan fuyun wang 《Earthquake Science》 CSCD 2018年第5期272-280,共9页
The influence of local site effects on seismic ground motions is an important issue in seismic hazard assessment and earthquake resistant design. Determining site effects in densely populated cities built on basins ca... The influence of local site effects on seismic ground motions is an important issue in seismic hazard assessment and earthquake resistant design. Determining site effects in densely populated cities built on basins can help to reduce the earthquake hazard. Site effects of Luoyang basin are estimated by the horizontal-to-vertical spectral ratio(HVSR) method using ambient noise records from a short-period dense array. The sites in Luoyang basin are sorted into three types according to the pattern of the HVSR curves. There are cases with a single clear peak, two clear peaks, and an unclear low frequency peak or multiple peaks, which correspond to there being one large impedance contrast interface, two large interfaces, and a moderate one beneath the sites, respectively. The site effects characterized by fundamental frequency from HVSR curves are affected by underlying sedimentary layers and depth of sedimentary basement. According to our results, the existence of thick sediment layer obviously lowers the fundamental frequency to the period range from 2 to 4 s in the downtown area of Luoyang city. The ground motion will amplify when through the sites and the buildings with height of 20–50 floors can resonate at the similar frequency domain. Site effects estimation using HVSR method from a short-period dense array is an effective technique in areas of moderate seismic risk where strong motion recordings are lacking, such as the Luoyang basin. 展开更多
关键词 site effects horizontal to vertical spectral ratio dense array Luoyang basin
下载PDF
Three-dimensional crustal P-wave velocity structure in the Yangbi and Eryuan earthquake regions, Yunnan, China 被引量:4
2
作者 Jia Jia Qingju Wu fuyun wang 《Earthquake Science》 2021年第4期358-366,共9页
A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,... A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,on May 21,2021,multiple earthquakes,one with magnitude 6.4 and several at 5.0 or above,occurred in Yangbi County,Dali Bai Autonomous Prefecture,Yunnan Province,China.All of these occurred in the Weixi-QiaohouWeishan fault zone.In this study,1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic identification technology and the first arrivals were picked up manually.Following this,a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality Pwave relative arrivals were collected for joint inversion via the double difference tomography method.This was done to obtain the regional three-dimensional fine crustal P-wave velocity structure.The results show that the travel time residuals before and after inversion decreased from the initial–0.1–0.1 s to–0.06–0.06 s.The upper crust in the study area,which exhibited a low-velocity anomaly,corresponded to the basin region;this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.Results also showed some correlation between the distribution of the earthquakes and velocity structure,as there was a lowvelocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions.In addition,earthquakes occurred predominantly in the highlow velocity abnormal transition zone.The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress,thus leading to the occurrence of earthquakes. 展开更多
关键词 Yangbi and Eryuan earthquakes double difference tomography three-dimensional P-wave velocity structure Weixi-Qiaohou-Weishan fault.
下载PDF
Shallow velocity structure of the Luoyang basin derived from dense array observations of urban ambient noise 被引量:2
3
作者 Ming Zhou Xiaofeng Tian +2 位作者 fuyun wang Yunhao Wei Hailiang Xin 《Earthquake Science》 CSCD 2018年第5期252-261,共10页
Determining the shallow structure of a sediment basin is important when evaluating potential seismic hazards given that such basins can significantly amplify seismic energy. The Luoyang basin is located in the western... Determining the shallow structure of a sediment basin is important when evaluating potential seismic hazards given that such basins can significantly amplify seismic energy. The Luoyang basin is located in the western He’nan uplift and is a Meso-Cenozoic depression basin. To characterize the shallow structure of the basin, we develop a model of the shallow high-resolution three-dimensional(3D)shear-wave velocity structure of the basin by applying ambient noise tomography to a dense array of 107 portable digital seismometers deployed over the basin. More than 1,400 Rayleigh-wave dispersion curves for periods in the range 0.5–5 s are extracted. The 3D variations of shear-wave velocity in the shallow crust are inverted using a direct surface-wave tomographic method with period-dependent ray tracing, with all the surface-wave group-velocity dispersion data being inverted simultaneously. The results show that in the shallow crust of the study area, the velocity distribution corresponds to surface geology and geological features. The Luoyang basin exhibits a low shear-wave velocity feature that is consistent with the distribution of sediment in the region,while the Xiongershan and Songshan uplifts exhibit higher shear-wave velocity structures. The results provide a shallow high-resolution 3D velocity model that can be used as a basis for simulation of strong ground motion and evaluation of potential seismic hazards. 展开更多
关键词 ambient noise tomography three-dimensional velocity structure Luoyang basin dense array
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部