The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
A Re-containing Ni-base single crystal superalloy was used to investigate the elementary processes associated with stress-rupture behavior at different temperatures where theγʹrafting occurs.At 900°C,the rupture...A Re-containing Ni-base single crystal superalloy was used to investigate the elementary processes associated with stress-rupture behavior at different temperatures where theγʹrafting occurs.At 900°C,the rupture behavior is mainly determined by the multiplication of dislocations within the wideningγchannels,which is closely linked with the propagation of microcracks along the inherentγ/γʹinterfaces.The rapid formation of lamellaγ/γʹraft structure,along with the developed-well interfacial dislocation networks,and its elastic instability are primarily responsible for the rupture behavior at 1100°C.There is a clear curvature tendency in the Larson-Miller plot of stress-rupture lifetime in relation to stress at high temperatures.It indicates that the influence extent ofγʹrafting on stress-rupture behavior is sensitive to the acting conditions of temperature and stress.展开更多
As-extruded ZK60 and ZK60-Y magnesium alloy plates were successfully processed via friction stir processing (FSP) at a tool rotation rate of 1600 r/rain and a traverse speed of 200 mm/min. FSP resulted in the format...As-extruded ZK60 and ZK60-Y magnesium alloy plates were successfully processed via friction stir processing (FSP) at a tool rotation rate of 1600 r/rain and a traverse speed of 200 mm/min. FSP resulted in the formation of equiaxed recrystallized microstructures with the average grain sizes of ,-8.5 and -4.7 μm in the ZK60 and ZK60-Y alloys, respectively. Moreover, FSP broke and dispersed the MgZn2 and W-phase (Mg3Zn3Y2) particles and dissolved MgZn2 phase in the FSP ZK60 alloy. With the addition of rare earth element yttrium (Y) into the ZK60 alloy, the ratio of the high angle grain boundaries (HAGBs) in the FSP alloys increased from 64% to 90%, and a certain amount of twins appeared in the FSP ZK60-Y alloy. The maximum elongation of 1200% and optimum strain rate of 3 X 10-3 s-1 achieved at 450 °C in the FSP ZK60-Y alloy were substantially higher than those of the FSP ZK60 alloy. This is attributed to the fine grains with high ratio of HAGBs and the distribution of a large number of dispersed second phase particles with high thermal stability in the FSP ZK60-Y alloy. Grain boundary sliding was identified as the primary deformation mechanism in the FSP ZK60 and ZK60-Y alloys from the superplastic data analyses and surficial morphology observations.展开更多
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金the National Science and Technology Major Project(Nos.J2019-VI-0023-0139 and J2019-VII-0004-0144)the National Natural Science Foundation of China(No.51871221)the National Key R&D Program of China(No.2020YFA0714900).
文摘A Re-containing Ni-base single crystal superalloy was used to investigate the elementary processes associated with stress-rupture behavior at different temperatures where theγʹrafting occurs.At 900°C,the rupture behavior is mainly determined by the multiplication of dislocations within the wideningγchannels,which is closely linked with the propagation of microcracks along the inherentγ/γʹinterfaces.The rapid formation of lamellaγ/γʹraft structure,along with the developed-well interfacial dislocation networks,and its elastic instability are primarily responsible for the rupture behavior at 1100°C.There is a clear curvature tendency in the Larson-Miller plot of stress-rupture lifetime in relation to stress at high temperatures.It indicates that the influence extent ofγʹrafting on stress-rupture behavior is sensitive to the acting conditions of temperature and stress.
基金supported by the National Natural Science Foundation of China(No.51001023)the Fundamental Research Funds for the Chinese Central Universities(No.N120407004)
文摘As-extruded ZK60 and ZK60-Y magnesium alloy plates were successfully processed via friction stir processing (FSP) at a tool rotation rate of 1600 r/rain and a traverse speed of 200 mm/min. FSP resulted in the formation of equiaxed recrystallized microstructures with the average grain sizes of ,-8.5 and -4.7 μm in the ZK60 and ZK60-Y alloys, respectively. Moreover, FSP broke and dispersed the MgZn2 and W-phase (Mg3Zn3Y2) particles and dissolved MgZn2 phase in the FSP ZK60 alloy. With the addition of rare earth element yttrium (Y) into the ZK60 alloy, the ratio of the high angle grain boundaries (HAGBs) in the FSP alloys increased from 64% to 90%, and a certain amount of twins appeared in the FSP ZK60-Y alloy. The maximum elongation of 1200% and optimum strain rate of 3 X 10-3 s-1 achieved at 450 °C in the FSP ZK60-Y alloy were substantially higher than those of the FSP ZK60 alloy. This is attributed to the fine grains with high ratio of HAGBs and the distribution of a large number of dispersed second phase particles with high thermal stability in the FSP ZK60-Y alloy. Grain boundary sliding was identified as the primary deformation mechanism in the FSP ZK60 and ZK60-Y alloys from the superplastic data analyses and surficial morphology observations.